symmetry x=-4(y-7)^2+7
|
symmetry\:x=-4(y-7)^{2}+7
|
intercepts of y=-x^2+8x-16
|
intercepts\:y=-x^{2}+8x-16
|
midpoint (-2,1)(4,6)
|
midpoint\:(-2,1)(4,6)
|
asymptotes of f(x)=((x^2+1))/(x+1)
|
asymptotes\:f(x)=\frac{(x^{2}+1)}{x+1}
|
domain of 4x^2-x-3
|
domain\:4x^{2}-x-3
|
domain of f(x)=65x-10
|
domain\:f(x)=65x-10
|
domain of f(x)=(9+4x^2)/(2x^2)
|
domain\:f(x)=\frac{9+4x^{2}}{2x^{2}}
|
range of y=cos(4x)+1
|
range\:y=\cos(4x)+1
|
inverse of f(x)=6^x+3
|
inverse\:f(x)=6^{x}+3
|
parity f(x)=2-2^{(atan((x-1)^2))}
|
parity\:f(x)=2-2^{(atan((x-1)^{2}))}
|
inverse of f(x)=(1+2^x)/(4-2^x)
|
inverse\:f(x)=\frac{1+2^{x}}{4-2^{x}}
|
f(x)= x/(x-2)
|
f(x)=\frac{x}{x-2}
|
intercepts of y=2x-1
|
intercepts\:y=2x-1
|
midpoint (-7/3 , 1/3)(-5/3 ,-7/3)
|
midpoint\:(-\frac{7}{3},\frac{1}{3})(-\frac{5}{3},-\frac{7}{3})
|
domain of sqrt(5+x)
|
domain\:\sqrt{5+x}
|
intercepts of f(x)=(2x+3)/(x+4)
|
intercepts\:f(x)=\frac{2x+3}{x+4}
|
distance (-1,-9)(6,8)
|
distance\:(-1,-9)(6,8)
|
domain of f(x)=log_{5}(8-2x)
|
domain\:f(x)=\log_{5}(8-2x)
|
extreme points of f(x)=x^3-6x^2-135x
|
extreme\:points\:f(x)=x^{3}-6x^{2}-135x
|
domain of f(x)= 5/(x^2-36)
|
domain\:f(x)=\frac{5}{x^{2}-36}
|
intercepts of f(x)=x^2-25
|
intercepts\:f(x)=x^{2}-25
|
critical points of f(x)=x^{5/2}-5x^2
|
critical\:points\:f(x)=x^{\frac{5}{2}}-5x^{2}
|
extreme points of f(x)=x^3-x^2-2x
|
extreme\:points\:f(x)=x^{3}-x^{2}-2x
|
inverse of y=(x-5)^2
|
inverse\:y=(x-5)^{2}
|
perpendicular f= 8/5
|
perpendicular\:f=\frac{8}{5}
|
inverse of f(x)= x/(x-2)
|
inverse\:f(x)=\frac{x}{x-2}
|
domain of f(x)=15-(x/(8.345))
|
domain\:f(x)=15-(\frac{x}{8.345})
|
domain of f(x)=x^2-12x+36
|
domain\:f(x)=x^{2}-12x+36
|
inverse of f(x)=9x+4
|
inverse\:f(x)=9x+4
|
midpoint (-4,-2),(3,3)
|
midpoint\:(-4,-2),(3,3)
|
range of-2(1/3)^x
|
range\:-2(\frac{1}{3})^{x}
|
domain of f(x)=(6x)/(x^2+5)
|
domain\:f(x)=\frac{6x}{x^{2}+5}
|
inflection points of f(x)=x^5-5x^4+15x+4
|
inflection\:points\:f(x)=x^{5}-5x^{4}+15x+4
|
domain of ln(4-t^2)
|
domain\:\ln(4-t^{2})
|
g(x)= 1/x
|
g(x)=\frac{1}{x}
|
inverse of f(x)=((x+11))/(x-8)
|
inverse\:f(x)=\frac{(x+11)}{x-8}
|
inverse of f(x)=(x-2)^2+4
|
inverse\:f(x)=(x-2)^{2}+4
|
inverse of f(x)=-2/(x-3)
|
inverse\:f(x)=-\frac{2}{x-3}
|
critical points of f(x)=(x^3)/3-81x
|
critical\:points\:f(x)=\frac{x^{3}}{3}-81x
|
midpoint (2,4)(-3,-9)
|
midpoint\:(2,4)(-3,-9)
|
shift f(x)=sin(2x)
|
shift\:f(x)=\sin(2x)
|
domain of (2x-5)/(7x+4)
|
domain\:\frac{2x-5}{7x+4}
|
range of (x-8)/(x+7)
|
range\:\frac{x-8}{x+7}
|
domain of log_{3}(x)
|
domain\:\log_{3}(x)
|
domain of sin^4(x)
|
domain\:\sin^{4}(x)
|
critical points of y=x^3-12x
|
critical\:points\:y=x^{3}-12x
|
domain of 3x-5
|
domain\:3x-5
|
distance (11,-2)(2,-3)
|
distance\:(11,-2)(2,-3)
|
range of f(x)=2x^2-5x+1
|
range\:f(x)=2x^{2}-5x+1
|
inverse of f(x)=5-2/3 x
|
inverse\:f(x)=5-\frac{2}{3}x
|
extreme points of f(x)=9x^2-2x^3
|
extreme\:points\:f(x)=9x^{2}-2x^{3}
|
critical points of \sqrt[3]{x}(x+4)
|
critical\:points\:\sqrt[3]{x}(x+4)
|
inverse of f(x)=e^{tan^{-1}(x)}
|
inverse\:f(x)=e^{\tan^{-1}(x)}
|
parallel y=2x+3,\at (3,1)
|
parallel\:y=2x+3,\at\:(3,1)
|
domain of (sqrt(x-3))^2
|
domain\:(\sqrt{x-3})^{2}
|
inverse of f(x)=x^2-2x+2
|
inverse\:f(x)=x^{2}-2x+2
|
inverse of f(x)=((2x-3))/(x+1)
|
inverse\:f(x)=\frac{(2x-3)}{x+1}
|
periodicity of sin(2)(x-(pi)/2)+1
|
periodicity\:\sin(2)(x-\frac{\pi}{2})+1
|
domain of (7e^x)/(7+e^x)
|
domain\:\frac{7e^{x}}{7+e^{x}}
|
inverse of 25h^2+28h-56
|
inverse\:25h^{2}+28h-56
|
intercepts of r(x)=(x(x-18)^2)/((x-18))
|
intercepts\:r(x)=\frac{x(x-18)^{2}}{(x-18)}
|
line (0,4)(4,0)
|
line\:(0,4)(4,0)
|
asymptotes of f(x)=(x^2+5x-36)/(x^2-16)
|
asymptotes\:f(x)=\frac{x^{2}+5x-36}{x^{2}-16}
|
asymptotes of ((x-3)(x+1))/(x+2)
|
asymptotes\:\frac{(x-3)(x+1)}{x+2}
|
domain of f(x)=7x^3
|
domain\:f(x)=7x^{3}
|
range of f(x)= 4/(x-5)
|
range\:f(x)=\frac{4}{x-5}
|
range of f(x)=(2x)/(3x-1)
|
range\:f(x)=\frac{2x}{3x-1}
|
symmetry (x+1)/(x^2+x+1)
|
symmetry\:\frac{x+1}{x^{2}+x+1}
|
f(x)=x^2+4x-5
|
f(x)=x^{2}+4x-5
|
asymptotes of g(x)=log_{2}(x+5)
|
asymptotes\:g(x)=\log_{2}(x+5)
|
log_{4}(x)
|
\log_{4}(x)
|
inverse of y=(x-3)^2
|
inverse\:y=(x-3)^{2}
|
range of xsqrt(x-9)
|
range\:x\sqrt{x-9}
|
midpoint (-6,-1)(4,5)
|
midpoint\:(-6,-1)(4,5)
|
extreme points of f(x)=x^3-15x^2
|
extreme\:points\:f(x)=x^{3}-15x^{2}
|
domain of f(x)= 1/(x^2-18x+90)
|
domain\:f(x)=\frac{1}{x^{2}-18x+90}
|
inflection points of f(x)=x^2+1/x
|
inflection\:points\:f(x)=x^{2}+\frac{1}{x}
|
midpoint (-2,2)(3,0)
|
midpoint\:(-2,2)(3,0)
|
slope of 9x-7y=-7
|
slope\:9x-7y=-7
|
domain of (sqrt(2x-3))/(x^2-5x+4)
|
domain\:\frac{\sqrt{2x-3}}{x^{2}-5x+4}
|
critical points of f(x)=x^{3/4}-9x^{1/4}
|
critical\:points\:f(x)=x^{\frac{3}{4}}-9x^{\frac{1}{4}}
|
range of-sqrt(x+3)-2
|
range\:-\sqrt{x+3}-2
|
inverse of f(x)=x^5-2
|
inverse\:f(x)=x^{5}-2
|
domain of f(x)=((x+3))/(sqrt(x^2-4x+3))
|
domain\:f(x)=\frac{(x+3)}{\sqrt{x^{2}-4x+3}}
|
domain of f(x)=sqrt(x-14)
|
domain\:f(x)=\sqrt{x-14}
|
inverse of f(x)=8-2x
|
inverse\:f(x)=8-2x
|
midpoint (-7,-4)(3,-2)
|
midpoint\:(-7,-4)(3,-2)
|
f(x)=-1
|
f(x)=-1
|
asymptotes of f(x)=(-4x-16)/(x^2-x-20)
|
asymptotes\:f(x)=\frac{-4x-16}{x^{2}-x-20}
|
perpendicular y=-4/3 x-8
|
perpendicular\:y=-\frac{4}{3}x-8
|
slope of 2x-8y=1
|
slope\:2x-8y=1
|
inverse of h(x)=7x^{3/5}
|
inverse\:h(x)=7x^{\frac{3}{5}}
|
domain of (x+3)^3
|
domain\:(x+3)^{3}
|
domain of f(x)=(x-2)^2-9
|
domain\:f(x)=(x-2)^{2}-9
|
symmetry f(x)=(x+7)^3-2
|
symmetry\:f(x)=(x+7)^{3}-2
|
inverse of 7x-9
|
inverse\:7x-9
|
domain of (x-1)/(x+4)
|
domain\:\frac{x-1}{x+4}
|
asymptotes of f(x)=(2x+2)/(x-3)
|
asymptotes\:f(x)=\frac{2x+2}{x-3}
|
domain of (3x-2)/(7x+5)
|
domain\:\frac{3x-2}{7x+5}
|
parity (ln(sec(x)+tan(x)))
|
parity\:(\ln(\sec(x)+\tan(x)))
|