x^2-2x+3
|
x^{2}-2x+3
|
slope intercept of 11x-4y=32
|
slope\:intercept\:11x-4y=32
|
inverse of 7x+9
|
inverse\:7x+9
|
domain of \sqrt[3]{x+6}
|
domain\:\sqrt[3]{x+6}
|
intercepts of f(x)=(-5x+20)/(x^2-16)
|
intercepts\:f(x)=\frac{-5x+20}{x^{2}-16}
|
intercepts of f(y)=y=8x-18
|
intercepts\:f(y)=y=8x-18
|
monotone intervals x^2
|
monotone\:intervals\:x^{2}
|
domain of f(x)=\sqrt[3]{x}-1
|
domain\:f(x)=\sqrt[3]{x}-1
|
extreme points of f(x)=x^3+6x^2+1
|
extreme\:points\:f(x)=x^{3}+6x^{2}+1
|
intercepts of f(x)= 2/(x-1)
|
intercepts\:f(x)=\frac{2}{x-1}
|
inverse of f(x)= 1/(sqrt(4-x^2))
|
inverse\:f(x)=\frac{1}{\sqrt{4-x^{2}}}
|
extreme points of f(x)=x^4-50x^2+11
|
extreme\:points\:f(x)=x^{4}-50x^{2}+11
|
distance (-1/2 , 3/4)(7/2 ,-13/4)
|
distance\:(-\frac{1}{2},\frac{3}{4})(\frac{7}{2},-\frac{13}{4})
|
shift sin(5x+(pi)/2)
|
shift\:\sin(5x+\frac{\pi}{2})
|
inverse of f(x)=12-x
|
inverse\:f(x)=12-x
|
domain of \sqrt[3]{x-2}
|
domain\:\sqrt[3]{x-2}
|
inverse of 2-x^2
|
inverse\:2-x^{2}
|
extreme points of y=x^3-2x^2-4x+1
|
extreme\:points\:y=x^{3}-2x^{2}-4x+1
|
extreme points of f(x)=x^4-50x^2
|
extreme\:points\:f(x)=x^{4}-50x^{2}
|
domain of (6x^2+1)/(2x^2+x-1)
|
domain\:\frac{6x^{2}+1}{2x^{2}+x-1}
|
critical points of f(x)=5t^{2/3}+t^{5/3}
|
critical\:points\:f(x)=5t^{\frac{2}{3}}+t^{\frac{5}{3}}
|
y=3x^5-x^3+5
|
y=3x^{5}-x^{3}+5
|
slope of 7x-4=0
|
slope\:7x-4=0
|
inverse of f(x)=(x-6)^2,x>= 6
|
inverse\:f(x)=(x-6)^{2},x\ge\:6
|
inflection points of f(x)=xsqrt(x+3)
|
inflection\:points\:f(x)=x\sqrt{x+3}
|
inverse of f(x)=sqrt(3-x)+7
|
inverse\:f(x)=\sqrt{3-x}+7
|
domain of f(x)=3sqrt(x)
|
domain\:f(x)=3\sqrt{x}
|
midpoint (6,6)(1,2)
|
midpoint\:(6,6)(1,2)
|
domain of f(x)=sqrt(3-x)*sqrt(x^2-1)
|
domain\:f(x)=\sqrt{3-x}\cdot\:\sqrt{x^{2}-1}
|
inflection points of x^4-5x^3+x^2+21x-18
|
inflection\:points\:x^{4}-5x^{3}+x^{2}+21x-18
|
domain of f(x)= 3/(sqrt(5+x))
|
domain\:f(x)=\frac{3}{\sqrt{5+x}}
|
intercepts of ((x+6)(x-1))/((x-1)(x-6))
|
intercepts\:\frac{(x+6)(x-1)}{(x-1)(x-6)}
|
line (211,0.6),(250,0.48)
|
line\:(211,0.6),(250,0.48)
|
slope intercept of 8y-3=-3(4-2x)
|
slope\:intercept\:8y-3=-3(4-2x)
|
domain of f(x)=arcsin(x)
|
domain\:f(x)=\arcsin(x)
|
extreme points of g(x)=-2x^4+8x^2-6
|
extreme\:points\:g(x)=-2x^{4}+8x^{2}-6
|
inverse of 3cos(x)
|
inverse\:3\cos(x)
|
range of (4x^3-3x^2+2+x)/(x(2x^2-3x+1))
|
range\:\frac{4x^{3}-3x^{2}+2+x}{x(2x^{2}-3x+1)}
|
domain of ((x-6))/(x+6)
|
domain\:\frac{(x-6)}{x+6}
|
line (1/6 ,-1/3)(5/6 ,3)
|
line\:(\frac{1}{6},-\frac{1}{3})(\frac{5}{6},3)
|
intercepts of f(x)=(x+3)\div (x-2)
|
intercepts\:f(x)=(x+3)\div\:(x-2)
|
intercepts of f(x)=x^3+3x^2-16x-48
|
intercepts\:f(x)=x^{3}+3x^{2}-16x-48
|
extreme points of 3-2x-x^3
|
extreme\:points\:3-2x-x^{3}
|
intercepts of f(x)=3x^2+4y=12
|
intercepts\:f(x)=3x^{2}+4y=12
|
domain of f(x)=x^2-4x-21
|
domain\:f(x)=x^{2}-4x-21
|
(ln(x))^2
|
(\ln(x))^{2}
|
distance (1.5,-3)(1.5,-6)
|
distance\:(1.5,-3)(1.5,-6)
|
intercepts of f(x)=(x+2)(x-2)
|
intercepts\:f(x)=(x+2)(x-2)
|
range of 0.5x^2-6x+21
|
range\:0.5x^{2}-6x+21
|
critical points of 1/(x^2+1)
|
critical\:points\:\frac{1}{x^{2}+1}
|
intercepts of f(x)=3x^2+6x-3
|
intercepts\:f(x)=3x^{2}+6x-3
|
intercepts of (3x-1)/(2x+5)
|
intercepts\:\frac{3x-1}{2x+5}
|
domain of (-4-5x)/(3x-1)
|
domain\:\frac{-4-5x}{3x-1}
|
inverse of f(x)=y=2^x
|
inverse\:f(x)=y=2^{x}
|
inverse of f(x)=2-sqrt(2)sec(x)
|
inverse\:f(x)=2-\sqrt{2}\sec(x)
|
critical points of 2xe^{-x^2}
|
critical\:points\:2xe^{-x^{2}}
|
-e^x
|
-e^{x}
|
extreme points of f(x)=3x^3-36x-3
|
extreme\:points\:f(x)=3x^{3}-36x-3
|
domain of f(x)=sqrt(x+1)+3
|
domain\:f(x)=\sqrt{x+1}+3
|
periodicity of-5sin(29(x-3))-8
|
periodicity\:-5\sin(29(x-3))-8
|
inverse of x/(x+5)
|
inverse\:\frac{x}{x+5}
|
inverse of x/(x-5)
|
inverse\:\frac{x}{x-5}
|
domain of f(x)=(x+1)/(-2)
|
domain\:f(x)=\frac{x+1}{-2}
|
inverse of (10)/x
|
inverse\:\frac{10}{x}
|
inverse of f(x)=16.438e^{-0.086x}
|
inverse\:f(x)=16.438e^{-0.086x}
|
domain of f(x)=sqrt(9-t)
|
domain\:f(x)=\sqrt{9-t}
|
intercepts of f(x)=x^2+y-4=0
|
intercepts\:f(x)=x^{2}+y-4=0
|
domain of (x+4)/(x-3)
|
domain\:\frac{x+4}{x-3}
|
inverse of f(x)=log_{2}(7x)
|
inverse\:f(x)=\log_{2}(7x)
|
domain of f(x)= 2/3 (x-3)^2+4
|
domain\:f(x)=\frac{2}{3}(x-3)^{2}+4
|
inverse of 11+\sqrt[3]{x}
|
inverse\:11+\sqrt[3]{x}
|
slope of y=3x+2
|
slope\:y=3x+2
|
inverse of f(x)=y=1000x-200
|
inverse\:f(x)=y=1000x-200
|
range of f(x)=3sqrt(x+4)-2
|
range\:f(x)=3\sqrt{x+4}-2
|
critical points of f(x)=18x^4-12x
|
critical\:points\:f(x)=18x^{4}-12x
|
extreme points of f(x)=x^3+3x+9
|
extreme\:points\:f(x)=x^{3}+3x+9
|
domain of f(x)=2-2^{arctan((x-1)^2)}
|
domain\:f(x)=2-2^{\arctan((x-1)^{2})}
|
intercepts of 2x^2+8x+3
|
intercepts\:2x^{2}+8x+3
|
inverse of f(x)= 1/(x+8)
|
inverse\:f(x)=\frac{1}{x+8}
|
extreme points of f(x)=(x^3)/3-2x^2+4x+3
|
extreme\:points\:f(x)=\frac{x^{3}}{3}-2x^{2}+4x+3
|
intercepts of f(x)=4x^2-16x+14
|
intercepts\:f(x)=4x^{2}-16x+14
|
periodicity of f(x)=-6/7 sin(9/8 x)
|
periodicity\:f(x)=-\frac{6}{7}\sin(\frac{9}{8}x)
|
domain of (2x)/2
|
domain\:\frac{2x}{2}
|
range of f(x)=5x^2+4x-9
|
range\:f(x)=5x^{2}+4x-9
|
inverse of 2/(x^2+1)
|
inverse\:\frac{2}{x^{2}+1}
|
domain of x^2-2x-2
|
domain\:x^{2}-2x-2
|
slope of y=-1/5 x-4
|
slope\:y=-\frac{1}{5}x-4
|
extreme points of f(x)=(x-3)^{2/3}
|
extreme\:points\:f(x)=(x-3)^{\frac{2}{3}}
|
domain of f(x)=((3x+8))/(x^2-81)
|
domain\:f(x)=\frac{(3x+8)}{x^{2}-81}
|
midpoint (1,2)(6,-3)
|
midpoint\:(1,2)(6,-3)
|
parity f(x)=(x^3)/(x^2-4)
|
parity\:f(x)=\frac{x^{3}}{x^{2}-4}
|
domain of f(x)=(x+8)/(x^2-7)
|
domain\:f(x)=\frac{x+8}{x^{2}-7}
|
symmetry x^2+x-6
|
symmetry\:x^{2}+x-6
|
range of f(x)=-x^2+10x-24
|
range\:f(x)=-x^{2}+10x-24
|
f(x)=2x-3
|
f(x)=2x-3
|
asymptotes of f(x)=2^{-x}
|
asymptotes\:f(x)=2^{-x}
|
critical points of 3x^5-15x
|
critical\:points\:3x^{5}-15x
|
domain of 7-6cos(theta)
|
domain\:7-6\cos(\theta)
|
critical points of 2x-3+(5x+5)/(x^2-1)
|
critical\:points\:2x-3+\frac{5x+5}{x^{2}-1}
|
inverse of y=arctan(x+(pi)/2)
|
inverse\:y=\arctan(x+\frac{\pi}{2})
|