monotone intervals f(x)=-sqrt(x)+6
|
monotone\:intervals\:f(x)=-\sqrt{x}+6
|
intercepts of (9x^2+18x+3)/(3x+2)
|
intercepts\:\frac{9x^{2}+18x+3}{3x+2}
|
inverse of f(x)=e^{2x-3}
|
inverse\:f(x)=e^{2x-3}
|
domain of (sqrt(x))/(9x^2+8x-1)
|
domain\:\frac{\sqrt{x}}{9x^{2}+8x-1}
|
asymptotes of f(x)=(x-12)/(x+19)
|
asymptotes\:f(x)=\frac{x-12}{x+19}
|
symmetry x^2-4x-12
|
symmetry\:x^{2}-4x-12
|
asymptotes of 2/x
|
asymptotes\:\frac{2}{x}
|
line (-6,-1)(5,-5)
|
line\:(-6,-1)(5,-5)
|
inverse of f(x)=-10+8x
|
inverse\:f(x)=-10+8x
|
range of f(x)=-2sqrt(x-3)+1
|
range\:f(x)=-2\sqrt{x-3}+1
|
asymptotes of f(x)=-6x^4
|
asymptotes\:f(x)=-6x^{4}
|
inverse of f(x)=8-7x
|
inverse\:f(x)=8-7x
|
domain of f(x)=x^2+x-12
|
domain\:f(x)=x^{2}+x-12
|
intercepts of f(x)=(2x)/(x-1)
|
intercepts\:f(x)=\frac{2x}{x-1}
|
inverse of f(x)=(sqrt(-x+6))+12
|
inverse\:f(x)=(\sqrt{-x+6})+12
|
asymptotes of f(x)=(x^2-36)/(10x+2)
|
asymptotes\:f(x)=\frac{x^{2}-36}{10x+2}
|
extreme points of 14
|
extreme\:points\:14
|
y=sqrt(x-4)
|
y=\sqrt{x-4}
|
inverse of f(x)=-x^5-3
|
inverse\:f(x)=-x^{5}-3
|
inverse of f(x)=((-16+n))/4
|
inverse\:f(x)=\frac{(-16+n)}{4}
|
perpendicular y=4x+8
|
perpendicular\:y=4x+8
|
extreme points of sqrt(x)(x+1)
|
extreme\:points\:\sqrt{x}(x+1)
|
inverse of f(13)=3x-2
|
inverse\:f(13)=3x-2
|
domain of f(x)=ln(x^2-8x)
|
domain\:f(x)=\ln(x^{2}-8x)
|
perpendicular y=-2x+2,\at (0,1)
|
perpendicular\:y=-2x+2,\at\:(0,1)
|
asymptotes of f(x)= x/(x^2+25)
|
asymptotes\:f(x)=\frac{x}{x^{2}+25}
|
domain of f(x)=7x+4
|
domain\:f(x)=7x+4
|
inverse of f(x)=(x+5)^7
|
inverse\:f(x)=(x+5)^{7}
|
domain of f(x)=(x-7)/(x-4)
|
domain\:f(x)=\frac{x-7}{x-4}
|
extreme points of xln(x)
|
extreme\:points\:x\ln(x)
|
line (100,32.5),(300,39.5)
|
line\:(100,32.5),(300,39.5)
|
domain of , 2/(9/x+5)
|
domain\:,\frac{2}{\frac{9}{x}+5}
|
line m=3,\at (-9,2)
|
line\:m=3,\at\:(-9,2)
|
range of 3x+5
|
range\:3x+5
|
intercepts of f(x)=sqrt(x+4)-3
|
intercepts\:f(x)=\sqrt{x+4}-3
|
domain of f(x)=(3x-6)/(x^2-4)
|
domain\:f(x)=\frac{3x-6}{x^{2}-4}
|
domain of f(x)=2x-6
|
domain\:f(x)=2x-6
|
range of f(x)=-3/4 x-2
|
range\:f(x)=-\frac{3}{4}x-2
|
line (-7,2)(8,2)
|
line\:(-7,2)(8,2)
|
distance (0,0)(0,8)
|
distance\:(0,0)(0,8)
|
extreme points of f(x)=ln(7-5x^2)
|
extreme\:points\:f(x)=\ln(7-5x^{2})
|
inverse of f(x)=-1/2 x+5
|
inverse\:f(x)=-\frac{1}{2}x+5
|
inverse of f(x)=4x+4
|
inverse\:f(x)=4x+4
|
asymptotes of f(x)=(x^2-5x+6)/(x^2-4x+3)
|
asymptotes\:f(x)=\frac{x^{2}-5x+6}{x^{2}-4x+3}
|
asymptotes of (-4x-12)/(x^2-9)
|
asymptotes\:\frac{-4x-12}{x^{2}-9}
|
domain of f(x)=sqrt(-x)+5
|
domain\:f(x)=\sqrt{-x}+5
|
inverse of f(x)= 1/2 x-15
|
inverse\:f(x)=\frac{1}{2}x-15
|
domain of f(x)=-5x-3
|
domain\:f(x)=-5x-3
|
midpoint (-2,8)(7,0)
|
midpoint\:(-2,8)(7,0)
|
intercepts of f(x)=(x^2-3x-18)/(x-8)
|
intercepts\:f(x)=\frac{x^{2}-3x-18}{x-8}
|
inflection points of ((e^x))/(8+e^x)
|
inflection\:points\:\frac{(e^{x})}{8+e^{x}}
|
domain of f(x)=sqrt(4x+5)
|
domain\:f(x)=\sqrt{4x+5}
|
domain of log_{2}(x)
|
domain\:\log_{2}(x)
|
line (-1,1)(1,-5)
|
line\:(-1,1)(1,-5)
|
inverse of f(x)=4+sqrt(4x-5)
|
inverse\:f(x)=4+\sqrt{4x-5}
|
asymptotes of f(x)=(sqrt(x^2+1))/(x+1)
|
asymptotes\:f(x)=\frac{\sqrt{x^{2}+1}}{x+1}
|
line y=-4/5 x-4
|
line\:y=-\frac{4}{5}x-4
|
domain of sqrt(3-x)*sqrt(x^2-1)
|
domain\:\sqrt{3-x}\cdot\:\sqrt{x^{2}-1}
|
inverse of f(x)=10sqrt(x)-9
|
inverse\:f(x)=10\sqrt{x}-9
|
asymptotes of (1/2)^{x+4}
|
asymptotes\:(\frac{1}{2})^{x+4}
|
domain of f(x)=7.48x+5
|
domain\:f(x)=7.48x+5
|
midpoint (-2,3)(10,2)
|
midpoint\:(-2,3)(10,2)
|
symmetry y=2x^2
|
symmetry\:y=2x^{2}
|
extreme points of f(x)=2(3-x)
|
extreme\:points\:f(x)=2(3-x)
|
inverse of f(x)=x^2-4x+1
|
inverse\:f(x)=x^{2}-4x+1
|
inverse of f(x)=(x+18)/(x-16)
|
inverse\:f(x)=\frac{x+18}{x-16}
|
symmetry (x^2+3x-10)/(x-3)
|
symmetry\:\frac{x^{2}+3x-10}{x-3}
|
parity (x-1)/(x^3+4x^2+12x+8)
|
parity\:\frac{x-1}{x^{3}+4x^{2}+12x+8}
|
periodicity of f(x)=(sec(pi x))/2
|
periodicity\:f(x)=\frac{\sec(\pi\:x)}{2}
|
parity 2x^6+x^8+3
|
parity\:2x^{6}+x^{8}+3
|
slope intercept of 3x
|
slope\:intercept\:3x
|
domain of =x
|
domain\:=x
|
intercepts of y=tan(x)
|
intercepts\:y=\tan(x)
|
domain of (ln(x-1))/((x-1)^3)
|
domain\:\frac{\ln(x-1)}{(x-1)^{3}}
|
y=4x
|
y=4x
|
intercepts of f(x)=(x-1)(x-3)
|
intercepts\:f(x)=(x-1)(x-3)
|
domain of f(x)=arctan(t+1)
|
domain\:f(x)=\arctan(t+1)
|
extreme points of f(x)=8sqrt(x^2+1)-x
|
extreme\:points\:f(x)=8\sqrt{x^{2}+1}-x
|
domain of f(x)=sqrt(x^2+3)
|
domain\:f(x)=\sqrt{x^{2}+3}
|
extreme points of y=x^2-2x-80
|
extreme\:points\:y=x^{2}-2x-80
|
domain of f(x)=(x-4)/(x^2-9)
|
domain\:f(x)=\frac{x-4}{x^{2}-9}
|
range of f(x)=-1/3 sin(3x)
|
range\:f(x)=-\frac{1}{3}\sin(3x)
|
midpoint (2,-11)(-9,0)
|
midpoint\:(2,-11)(-9,0)
|
inverse of f(x)= 1/(x-4)
|
inverse\:f(x)=\frac{1}{x-4}
|
domain of f(x)= 3/(x-2)\div sqrt(x-1)
|
domain\:f(x)=\frac{3}{x-2}\div\:\sqrt{x-1}
|
inverse of f(x)=-32x-5
|
inverse\:f(x)=-32x-5
|
inverse of f(x)=3+6/x
|
inverse\:f(x)=3+\frac{6}{x}
|
domain of-x^2+8x-10
|
domain\:-x^{2}+8x-10
|
domain of f(x)=(x^2+x-6)/(x-2)
|
domain\:f(x)=\frac{x^{2}+x-6}{x-2}
|
domain of f(x)=0.25log_{2}(x)
|
domain\:f(x)=0.25\log_{2}(x)
|
inverse of sqrt(2-x/(x-3))
|
inverse\:\sqrt{2-\frac{x}{x-3}}
|
midpoint (2,4)(-8,-20)
|
midpoint\:(2,4)(-8,-20)
|
slope of 0=5y-x
|
slope\:0=5y-x
|
extreme points of f(x)=x+(625)/x
|
extreme\:points\:f(x)=x+\frac{625}{x}
|
range of f(x)=1-2x-x^2
|
range\:f(x)=1-2x-x^{2}
|
domain of (x^2+x-6)/(x^2+6x+9)
|
domain\:\frac{x^{2}+x-6}{x^{2}+6x+9}
|
inverse of f(x)=10^{x-6}+1
|
inverse\:f(x)=10^{x-6}+1
|
midpoint (-2,2)(5,0)
|
midpoint\:(-2,2)(5,0)
|
inverse of f(x)= 2/5 x+10
|
inverse\:f(x)=\frac{2}{5}x+10
|
domain of f(x)=log_{2}(x+2)
|
domain\:f(x)=\log_{2}(x+2)
|