slope intercept of y+6=2(x-2)
|
slope\:intercept\:y+6=2(x-2)
|
range of f(x)=sqrt(4x-x^2)
|
range\:f(x)=\sqrt{4x-x^{2}}
|
range of f(x)=sqrt(2x+4)
|
range\:f(x)=\sqrt{2x+4}
|
range of (3x-5)/(x+4)
|
range\:\frac{3x-5}{x+4}
|
intercepts of log_{3}(x-2)+1
|
intercepts\:\log_{3}(x-2)+1
|
domain of f(x)= 1/(x^2-4)
|
domain\:f(x)=\frac{1}{x^{2}-4}
|
inverse of sqrt(x^2+7x),x> 0
|
inverse\:\sqrt{x^{2}+7x},x\gt\:0
|
parity f(x)= x/(x^2-1)
|
parity\:f(x)=\frac{x}{x^{2}-1}
|
f(x)=(x-3)^2
|
f(x)=(x-3)^{2}
|
x^2-5
|
x^{2}-5
|
asymptotes of f(y)=(x^2+4)/(x^2-1)
|
asymptotes\:f(y)=\frac{x^{2}+4}{x^{2}-1}
|
extreme points of f(x)=x^3-6x^2+7
|
extreme\:points\:f(x)=x^{3}-6x^{2}+7
|
perpendicular y=-3x+1,\at (3,5)
|
perpendicular\:y=-3x+1,\at\:(3,5)
|
midpoint (30,8)(40,7)
|
midpoint\:(30,8)(40,7)
|
shift 4cos(2(x+(pi)/4))-3
|
shift\:4\cos(2(x+\frac{\pi}{4}))-3
|
line 2x+2
|
line\:2x+2
|
range of f(x)=e^{3x-2}
|
range\:f(x)=e^{3x-2}
|
amplitude of sin(x+(3pi)/2)
|
amplitude\:\sin(x+\frac{3\pi}{2})
|
asymptotes of (x^3-8)/(x^2-5x+6)
|
asymptotes\:\frac{x^{3}-8}{x^{2}-5x+6}
|
midpoint (-3,3)(-5,12)
|
midpoint\:(-3,3)(-5,12)
|
midpoint (-5,-1)(-1,0)
|
midpoint\:(-5,-1)(-1,0)
|
domain of sqrt(x^2+x+1)
|
domain\:\sqrt{x^{2}+x+1}
|
critical points of f(x)=1+8x-x^3
|
critical\:points\:f(x)=1+8x-x^{3}
|
domain of f(x)=sqrt(t)
|
domain\:f(x)=\sqrt{t}
|
inverse of f(x)=sqrt(3x+6)
|
inverse\:f(x)=\sqrt{3x+6}
|
line x=30-2/11 y
|
line\:x=30-\frac{2}{11}y
|
asymptotes of (1/2)^x
|
asymptotes\:(\frac{1}{2})^{x}
|
inverse of f(x)=(9-4x)/(x+7)
|
inverse\:f(x)=\frac{9-4x}{x+7}
|
domain of f(x)=sqrt(2x^2-13x-24)
|
domain\:f(x)=\sqrt{2x^{2}-13x-24}
|
midpoint (2,-6)(6,8)
|
midpoint\:(2,-6)(6,8)
|
domain of f(x)=6^x
|
domain\:f(x)=6^{x}
|
inverse of f(x)=-x^3-4
|
inverse\:f(x)=-x^{3}-4
|
domain of f(x)=x^4-4x^3
|
domain\:f(x)=x^{4}-4x^{3}
|
asymptotes of f(x)=(t^2-2t)/(t^4-16)
|
asymptotes\:f(x)=\frac{t^{2}-2t}{t^{4}-16}
|
slope of y= 7/6 x
|
slope\:y=\frac{7}{6}x
|
range of f(x)=sqrt(9-x^2)
|
range\:f(x)=\sqrt{9-x^{2}}
|
inverse of f(x)=\sqrt[3]{x}-2
|
inverse\:f(x)=\sqrt[3]{x}-2
|
critical points of f(x)=5x^2-x^3+2
|
critical\:points\:f(x)=5x^{2}-x^{3}+2
|
critical points of 1/((x^2+1)^{3/2)}
|
critical\:points\:\frac{1}{(x^{2}+1)^{\frac{3}{2}}}
|
critical points of 3/(1+9x^2)
|
critical\:points\:\frac{3}{1+9x^{2}}
|
extreme points of f(x)=x^2-2x+2
|
extreme\:points\:f(x)=x^{2}-2x+2
|
inverse of f(x)=\sqrt[3]{(-x+2)/2}
|
inverse\:f(x)=\sqrt[3]{\frac{-x+2}{2}}
|
domain of f(x)=(3x+|x|)/x
|
domain\:f(x)=\frac{3x+|x|}{x}
|
perpendicular y= x/2-9,\at (8,-7)
|
perpendicular\:y=\frac{x}{2}-9,\at\:(8,-7)
|
inverse of (x-6)/(x+2)
|
inverse\:\frac{x-6}{x+2}
|
asymptotes of f(x)=(sqrt(5x^2+6))/(7x+5)
|
asymptotes\:f(x)=\frac{\sqrt{5x^{2}+6}}{7x+5}
|
domain of 1/(x^2-5x+6)
|
domain\:\frac{1}{x^{2}-5x+6}
|
domain of f(x)=(2x+1)/(x^2-4x+3)
|
domain\:f(x)=\frac{2x+1}{x^{2}-4x+3}
|
domain of ((x-1)^2)/((x-1)^2+1)
|
domain\:\frac{(x-1)^{2}}{(x-1)^{2}+1}
|
domain of-sqrt(x)+2
|
domain\:-\sqrt{x}+2
|
asymptotes of f(x)=(2e^x)/(-3+5e^{-x)}
|
asymptotes\:f(x)=\frac{2e^{x}}{-3+5e^{-x}}
|
inflection points of f(x)=x+sin(x)
|
inflection\:points\:f(x)=x+\sin(x)
|
slope intercept of 10x+20y=200
|
slope\:intercept\:10x+20y=200
|
distance (-7,3)(5,-3)
|
distance\:(-7,3)(5,-3)
|
intercepts of f(x)=x-y+2=0y2x-5y+1=0
|
intercepts\:f(x)=x-y+2=0y2x-5y+1=0
|
range of f(x)=-2x^2+12x-2
|
range\:f(x)=-2x^{2}+12x-2
|
inverse of-2+sqrt(4x+1)
|
inverse\:-2+\sqrt{4x+1}
|
inverse of y=(x^2+2x+1)/(x+3)
|
inverse\:y=\frac{x^{2}+2x+1}{x+3}
|
inverse of f(x)=0.2x
|
inverse\:f(x)=0.2x
|
midpoint (-4,0)(6,-7)
|
midpoint\:(-4,0)(6,-7)
|
slope intercept of 3x+y=3
|
slope\:intercept\:3x+y=3
|
intercepts of f(x)=x^2-7x+6
|
intercepts\:f(x)=x^{2}-7x+6
|
domain of f(x)=(x-1)/(x^2+2x+1)
|
domain\:f(x)=\frac{x-1}{x^{2}+2x+1}
|
domain of f(x)=pi(x)^2
|
domain\:f(x)=\pi(x)^{2}
|
domain of f(x)=(13x+7)/(7x-4)
|
domain\:f(x)=\frac{13x+7}{7x-4}
|
critical points of f(x)=x^4-8x^2+5
|
critical\:points\:f(x)=x^{4}-8x^{2}+5
|
perpendicular y=5
|
perpendicular\:y=5
|
domain of f(x)=((x-1))/(x+1)
|
domain\:f(x)=\frac{(x-1)}{x+1}
|
domain of f(x)=x^5
|
domain\:f(x)=x^{5}
|
line X=-8
|
line\:X=-8
|
asymptotes of f(x)=(x-2)/(x^2+2x-15)
|
asymptotes\:f(x)=\frac{x-2}{x^{2}+2x-15}
|
inverse of f(x)=7x-9
|
inverse\:f(x)=7x-9
|
inverse of f(x)=(x^5+2)^{1/4}
|
inverse\:f(x)=(x^{5}+2)^{\frac{1}{4}}
|
domain of f(x)= 1/(t+3)
|
domain\:f(x)=\frac{1}{t+3}
|
domain of y= 1/(e^x)
|
domain\:y=\frac{1}{e^{x}}
|
intercepts of f(x)=5x-7y=35
|
intercepts\:f(x)=5x-7y=35
|
perpendicular-4x
|
perpendicular\:-4x
|
distance (5,10)(-1,1)
|
distance\:(5,10)(-1,1)
|
inverse of f(x)=-3sqrt(-x+4.7)+1.56
|
inverse\:f(x)=-3\sqrt{-x+4.7}+1.56
|
intercepts of (3x+6)/(x^2+2x-8)
|
intercepts\:\frac{3x+6}{x^{2}+2x-8}
|
domain of f(x)= 1/(x2)
|
domain\:f(x)=\frac{1}{x2}
|
critical points of 6x^4-x^3+16x^2-12
|
critical\:points\:6x^{4}-x^{3}+16x^{2}-12
|
slope intercept of x+5y=-15
|
slope\:intercept\:x+5y=-15
|
inflection points of x^4-8x^2+16
|
inflection\:points\:x^{4}-8x^{2}+16
|
intercepts of f(x)=x^2+6x+9
|
intercepts\:f(x)=x^{2}+6x+9
|
extreme points of f(x)=4x+1,0<= x< 1
|
extreme\:points\:f(x)=4x+1,0\le\:x\lt\:1
|
line (3,8)(3,-6)
|
line\:(3,8)(3,-6)
|
domain of (10x-1)/(3-5x)
|
domain\:\frac{10x-1}{3-5x}
|
domain of 11^{23}
|
domain\:11^{23}
|
domain of h(x)=ln(x)+ln(5-x)
|
domain\:h(x)=\ln(x)+\ln(5-x)
|
domain of f(x)=(sqrt((13-2x)))/(x-3)
|
domain\:f(x)=\frac{\sqrt{(13-2x)}}{x-3}
|
inflection points of f(x)=sin(x/2)
|
inflection\:points\:f(x)=\sin(\frac{x}{2})
|
domain of 3sqrt(x)
|
domain\:3\sqrt{x}
|
domain of f(x)=(x-4)/(x-2)
|
domain\:f(x)=\frac{x-4}{x-2}
|
domain of f(x)=-sqrt(x)+2
|
domain\:f(x)=-\sqrt{x}+2
|
intercepts of (x^2+3x+2)/(-3x-12)
|
intercepts\:\frac{x^{2}+3x+2}{-3x-12}
|
range of 2^{x-1}+2
|
range\:2^{x-1}+2
|
range of f(x)=-sqrt(x+2)+3
|
range\:f(x)=-\sqrt{x+2}+3
|
domain of f(x)=((3x-8)-(x-1))(x)
|
domain\:f(x)=((3x-8)-(x-1))(x)
|
inverse of sqrt(9-x^2)
|
inverse\:\sqrt{9-x^{2}}
|