domain of f(x)= 4/(x-1)
|
domain\:f(x)=\frac{4}{x-1}
|
extreme points of f(x)=x^3-12x+3
|
extreme\:points\:f(x)=x^{3}-12x+3
|
periodicity of 3/2 sin(2pi x)
|
periodicity\:\frac{3}{2}\sin(2\pi\:x)
|
extreme points of f(x)=t^2-10t+25
|
extreme\:points\:f(x)=t^{2}-10t+25
|
f(x)= 1/(x^2+1)
|
f(x)=\frac{1}{x^{2}+1}
|
parity f(x)= 1/(\sqrt[3]{x)}
|
parity\:f(x)=\frac{1}{\sqrt[3]{x}}
|
asymptotes of f(x)=(2x)/(3x^2+1)
|
asymptotes\:f(x)=\frac{2x}{3x^{2}+1}
|
critical points of f(x,y)=4x^3
|
critical\:points\:f(x,y)=4x^{3}
|
periodicity of f(x)=-2sin(-3x+(pi)/2)
|
periodicity\:f(x)=-2\sin(-3x+\frac{\pi}{2})
|
inflection points of f(x)=-x^3+3x^2-4
|
inflection\:points\:f(x)=-x^{3}+3x^{2}-4
|
slope of x-2y=-8
|
slope\:x-2y=-8
|
slope intercept of y=-2/3+5
|
slope\:intercept\:y=-\frac{2}{3}+5
|
inverse of f(x)=sqrt(x+1)+3
|
inverse\:f(x)=\sqrt{x+1}+3
|
asymptotes of f(x)=(2-x^2)/(x+2)
|
asymptotes\:f(x)=\frac{2-x^{2}}{x+2}
|
midpoint (-2,-4)(-3,2)
|
midpoint\:(-2,-4)(-3,2)
|
range of (2x)/(x-1)
|
range\:\frac{2x}{x-1}
|
inverse of y=5x-x^2
|
inverse\:y=5x-x^{2}
|
inverse of f(x)= 4/5 x+2
|
inverse\:f(x)=\frac{4}{5}x+2
|
critical points of 4(x-5)^{2/3}
|
critical\:points\:4(x-5)^{\frac{2}{3}}
|
domain of f(x)=sqrt(x+4)-(sqrt(1-x))/x
|
domain\:f(x)=\sqrt{x+4}-\frac{\sqrt{1-x}}{x}
|
extreme points of f(x)=ax^2
|
extreme\:points\:f(x)=ax^{2}
|
domain of f(x)=\sqrt[3]{x}-4
|
domain\:f(x)=\sqrt[3]{x}-4
|
slope of 6x+7y=5
|
slope\:6x+7y=5
|
asymptotes of f(x)=x+4/x
|
asymptotes\:f(x)=x+\frac{4}{x}
|
asymptotes of f(x)=(x+3)/(x^2+9)
|
asymptotes\:f(x)=\frac{x+3}{x^{2}+9}
|
range of sqrt(x^{(2))-81}
|
range\:\sqrt{x^{(2)}-81}
|
symmetry-3x^2+24x-48
|
symmetry\:-3x^{2}+24x-48
|
distance (-2,1)(2,7)
|
distance\:(-2,1)(2,7)
|
range of f(x)=(x^2+6x-7)/(x^2+2x-3)
|
range\:f(x)=\frac{x^{2}+6x-7}{x^{2}+2x-3}
|
inflection points of y=-1/3 x^3+2x^2-1
|
inflection\:points\:y=-\frac{1}{3}x^{3}+2x^{2}-1
|
critical points of y=(x-2)^3
|
critical\:points\:y=(x-2)^{3}
|
inverse of f(x)=x^2-36
|
inverse\:f(x)=x^{2}-36
|
domain of f(x)=e^{-x}+2
|
domain\:f(x)=e^{-x}+2
|
range of f(x)= 7/3 x-1
|
range\:f(x)=\frac{7}{3}x-1
|
intercepts of 2(x+3)^2-2
|
intercepts\:2(x+3)^{2}-2
|
extreme points of =-6x^3+3x^2+12x-2
|
extreme\:points\:=-6x^{3}+3x^{2}+12x-2
|
inverse of f(x)=5-3x
|
inverse\:f(x)=5-3x
|
extreme points of f(x)= x/(x^2+6)
|
extreme\:points\:f(x)=\frac{x}{x^{2}+6}
|
domain of f(x)=|x|-1
|
domain\:f(x)=|x|-1
|
symmetry 2y=4x^2-5
|
symmetry\:2y=4x^{2}-5
|
domain of f(x)=3^{x+2}
|
domain\:f(x)=3^{x+2}
|
range of (x-4)^2
|
range\:(x-4)^{2}
|
parallel 4x+3y=7(-2,-9)
|
parallel\:4x+3y=7(-2,-9)
|
intercepts of f(x)=-(2x-8)^2+4
|
intercepts\:f(x)=-(2x-8)^{2}+4
|
inverse of y=tan(2x+pi)
|
inverse\:y=\tan(2x+\pi)
|
inverse of f(x)=x-x^2
|
inverse\:f(x)=x-x^{2}
|
domain of (7x)/(9x-1)
|
domain\:\frac{7x}{9x-1}
|
midpoint (0,0)(2,8)
|
midpoint\:(0,0)(2,8)
|
inverse of f(x)=\sqrt[3]{(x+4)^2}
|
inverse\:f(x)=\sqrt[3]{(x+4)^{2}}
|
asymptotes of (x-9)/(x-3)
|
asymptotes\:\frac{x-9}{x-3}
|
domain of y=sqrt(5-x)
|
domain\:y=\sqrt{5-x}
|
intercepts of f(x)=-x^2+4x+3
|
intercepts\:f(x)=-x^{2}+4x+3
|
inverse of cos(3x)
|
inverse\:\cos(3x)
|
range of f(x)=4x-x^2+5
|
range\:f(x)=4x-x^{2}+5
|
amplitude of-6sin(x)
|
amplitude\:-6\sin(x)
|
domain of (x+7)/(x^2-49)
|
domain\:\frac{x+7}{x^{2}-49}
|
asymptotes of (3x-15)/(-x^2+25)
|
asymptotes\:\frac{3x-15}{-x^{2}+25}
|
inverse of 9+sqrt(2x-8)
|
inverse\:9+\sqrt{2x-8}
|
inverse of f(x)=5x^3+4
|
inverse\:f(x)=5x^{3}+4
|
inflection points of ln(x+3)+5/(x+3)
|
inflection\:points\:\ln(x+3)+\frac{5}{x+3}
|
asymptotes of f(x)=(20x^2+8x-1)/(-10x+1)
|
asymptotes\:f(x)=\frac{20x^{2}+8x-1}{-10x+1}
|
domain of 2^{x-4}
|
domain\:2^{x-4}
|
inverse of f(5)=x+12
|
inverse\:f(5)=x+12
|
asymptotes of f(x)= 4/(-5x+9)
|
asymptotes\:f(x)=\frac{4}{-5x+9}
|
domain of f(x)= 1/2 x^3+2
|
domain\:f(x)=\frac{1}{2}x^{3}+2
|
slope intercept of x+2y=-8
|
slope\:intercept\:x+2y=-8
|
critical points of f(x)=6x-18
|
critical\:points\:f(x)=6x-18
|
range of 1/(x+4)
|
range\:\frac{1}{x+4}
|
perpendicular 3x-2y=-6
|
perpendicular\:3x-2y=-6
|
symmetry x/(x^2+1)
|
symmetry\:\frac{x}{x^{2}+1}
|
critical points of (2x-3)/(x^2-1)
|
critical\:points\:\frac{2x-3}{x^{2}-1}
|
range of f(x)= x/(2x+1)
|
range\:f(x)=\frac{x}{2x+1}
|
inverse of f(x)= 2/(x+13)
|
inverse\:f(x)=\frac{2}{x+13}
|
parallel y=6x-4
|
parallel\:y=6x-4
|
domain of f(x)=(12)/x
|
domain\:f(x)=\frac{12}{x}
|
asymptotes of f(x)=(6e^x)/(e^x-6)
|
asymptotes\:f(x)=\frac{6e^{x}}{e^{x}-6}
|
inverse of f(x)= 1/2 \sqrt[3]{x+4}+2
|
inverse\:f(x)=\frac{1}{2}\sqrt[3]{x+4}+2
|
critical points of y=xsqrt(x+1)
|
critical\:points\:y=x\sqrt{x+1}
|
inverse of f(x)=(5x-1)/(2x+4)
|
inverse\:f(x)=\frac{5x-1}{2x+4}
|
extreme points of x^4+4/3 x^3-4x^2-4/3
|
extreme\:points\:x^{4}+\frac{4}{3}x^{3}-4x^{2}-\frac{4}{3}
|
critical points of x^2-2x+4
|
critical\:points\:x^{2}-2x+4
|
midpoint (2,8)(5,5)
|
midpoint\:(2,8)(5,5)
|
domain of x/(1+2x)
|
domain\:\frac{x}{1+2x}
|
range of 3/(5x^5)
|
range\:\frac{3}{5x^{5}}
|
inverse of f(x)=x^2-4x
|
inverse\:f(x)=x^{2}-4x
|
range of (x^2-5x-6)/(x+1)
|
range\:\frac{x^{2}-5x-6}{x+1}
|
intercepts of f(x)=y=3x-3
|
intercepts\:f(x)=y=3x-3
|
perpendicular y=5x+2,\at x=1
|
perpendicular\:y=5x+2,\at\:x=1
|
range of f(x)= x/(2x-5)
|
range\:f(x)=\frac{x}{2x-5}
|
asymptotes of f(x)=(5x-15)/(3x-15)
|
asymptotes\:f(x)=\frac{5x-15}{3x-15}
|
extreme points of y=x^2-2x-1
|
extreme\:points\:y=x^{2}-2x-1
|
inverse of f(x)=(2x-1)/(3-x)
|
inverse\:f(x)=\frac{2x-1}{3-x}
|
domain of (x^2+1+x)/(x^2+1)
|
domain\:\frac{x^{2}+1+x}{x^{2}+1}
|
midpoint (-7,1)(3,-5)
|
midpoint\:(-7,1)(3,-5)
|
domain of f(x)=(x+3)/(2x^2-x-3)
|
domain\:f(x)=\frac{x+3}{2x^{2}-x-3}
|
asymptotes of f(x)= 3/(x^2-1)
|
asymptotes\:f(x)=\frac{3}{x^{2}-1}
|
asymptotes of x=-1,-2
|
asymptotes\:x=-1,-2
|
range of h(x)=(2x)/(x-11)
|
range\:h(x)=\frac{2x}{x-11}
|
frequency 5sin(2x)
|
frequency\:5\sin(2x)
|
domain of (4x^2-5)/(2x^2+8)
|
domain\:\frac{4x^{2}-5}{2x^{2}+8}
|