intercepts of (x^2+1)/x
|
intercepts\:\frac{x^{2}+1}{x}
|
domain of (x^2+6)
|
domain\:(x^{2}+6)
|
parity f(x)=sin(sin(x))
|
parity\:f(x)=\sin(\sin(x))
|
slope of 2x+5y=5
|
slope\:2x+5y=5
|
symmetry x^2-6x+8
|
symmetry\:x^{2}-6x+8
|
domain of y=sqrt(25-x^2)
|
domain\:y=\sqrt{25-x^{2}}
|
extreme points of f(x)=(x^2-4)/(1-x^2)
|
extreme\:points\:f(x)=\frac{x^{2}-4}{1-x^{2}}
|
slope intercept of 2x+3y=1470
|
slope\:intercept\:2x+3y=1470
|
inverse of y= x/3
|
inverse\:y=\frac{x}{3}
|
perpendicular y=x+2,\at (7,5)
|
perpendicular\:y=x+2,\at\:(7,5)
|
domain of f(x)=sqrt(x-15)
|
domain\:f(x)=\sqrt{x-15}
|
inverse of f(x)=e^{(sqrt(x))/4}
|
inverse\:f(x)=e^{\frac{\sqrt{x}}{4}}
|
line y= 1/2 x-2
|
line\:y=\frac{1}{2}x-2
|
domain of f(x)=-3+sqrt(4x-12)
|
domain\:f(x)=-3+\sqrt{4x-12}
|
domain of x/(x^2-x+1)
|
domain\:\frac{x}{x^{2}-x+1}
|
critical points of (x-1)^2(x-2)^3
|
critical\:points\:(x-1)^{2}(x-2)^{3}
|
inverse of y=ln(x+2)
|
inverse\:y=\ln(x+2)
|
critical points of (x^4)/4-2x^2
|
critical\:points\:\frac{x^{4}}{4}-2x^{2}
|
4x^2+9
|
4x^{2}+9
|
domain of (x^2)/(x+4)
|
domain\:\frac{x^{2}}{x+4}
|
asymptotes of f(x)=6
|
asymptotes\:f(x)=6
|
periodicity of f(x)=y=4sin(1/6 x)
|
periodicity\:f(x)=y=4\sin(\frac{1}{6}x)
|
inverse of f(x)=-x^2+4x-2
|
inverse\:f(x)=-x^{2}+4x-2
|
domain of f(x)=sqrt(2+7x)
|
domain\:f(x)=\sqrt{2+7x}
|
domain of f(x)=4-x^2-y^2=0
|
domain\:f(x)=4-x^{2}-y^{2}=0
|
critical points of (3x)/(x^2+1)
|
critical\:points\:\frac{3x}{x^{2}+1}
|
inverse of f(x)= 5/2 x+8
|
inverse\:f(x)=\frac{5}{2}x+8
|
inverse of f(x)=(x-1)^2+1
|
inverse\:f(x)=(x-1)^{2}+1
|
parity f(-x)= 1/(2x)
|
parity\:f(-x)=\frac{1}{2x}
|
inflection points of x-3\sqrt[3]{x}
|
inflection\:points\:x-3\sqrt[3]{x}
|
inflection points of (2x-6)/(x+6)
|
inflection\:points\:\frac{2x-6}{x+6}
|
critical points of f(x)=x^{11/5}-x^{6/5}
|
critical\:points\:f(x)=x^{\frac{11}{5}}-x^{\frac{6}{5}}
|
2cos(x)
|
2\cos(x)
|
asymptotes of y= 3/(x+2)
|
asymptotes\:y=\frac{3}{x+2}
|
extreme points of f(x)=1
|
extreme\:points\:f(x)=1
|
range of (3x+6)/x
|
range\:\frac{3x+6}{x}
|
domain of (xsqrt(x))/(2x^2-5)
|
domain\:\frac{x\sqrt{x}}{2x^{2}-5}
|
asymptotes of f(x)=log_{2}(x)-3
|
asymptotes\:f(x)=\log_{2}(x)-3
|
domain of f(x)=(-4x+39)/(9x-52)
|
domain\:f(x)=\frac{-4x+39}{9x-52}
|
domain of f(x)=sqrt(5+2x)
|
domain\:f(x)=\sqrt{5+2x}
|
inverse of f(x)=(x^2-16)/(3x^2)
|
inverse\:f(x)=\frac{x^{2}-16}{3x^{2}}
|
domain of f(x)=(sqrt(9+x))/(6-x)
|
domain\:f(x)=\frac{\sqrt{9+x}}{6-x}
|
inflection points of x^3-5x^2+13
|
inflection\:points\:x^{3}-5x^{2}+13
|
domain of f(x)=sqrt(x(x-1))
|
domain\:f(x)=\sqrt{x(x-1)}
|
inflection points of x^4-24x^2+75
|
inflection\:points\:x^{4}-24x^{2}+75
|
line (8,1230),(16,2430)
|
line\:(8,1230),(16,2430)
|
domain of f(x)=-3x
|
domain\:f(x)=-3x
|
inverse of-1/2
|
inverse\:-\frac{1}{2}
|
line m= 7/8 ,\at (4,-5)
|
line\:m=\frac{7}{8},\at\:(4,-5)
|
extreme points of f(x)=2x^2-12x-5
|
extreme\:points\:f(x)=2x^{2}-12x-5
|
symmetry x^2-6x-7
|
symmetry\:x^{2}-6x-7
|
inverse of f(x)= x/6+9
|
inverse\:f(x)=\frac{x}{6}+9
|
range of f(x)=3+2/x
|
range\:f(x)=3+\frac{2}{x}
|
parallel y=3x+2,\at (2,-4)
|
parallel\:y=3x+2,\at\:(2,-4)
|
inverse of h(x)=(x+1)(x-2)
|
inverse\:h(x)=(x+1)(x-2)
|
perpendicular 6x-y=5,\at (6,5)
|
perpendicular\:6x-y=5,\at\:(6,5)
|
slope of 2x-y=3
|
slope\:2x-y=3
|
domain of f(x)=-3^{x+1}
|
domain\:f(x)=-3^{x+1}
|
extreme points of f(x)=x^2-x-6
|
extreme\:points\:f(x)=x^{2}-x-6
|
symmetry f(x)=3
|
symmetry\:f(x)=3
|
inverse of f(x)= 1/4 x-6
|
inverse\:f(x)=\frac{1}{4}x-6
|
frequency sin(7x)
|
frequency\:\sin(7x)
|
domain of (sqrt(x))/(2x^2-5)
|
domain\:\frac{\sqrt{x}}{2x^{2}-5}
|
symmetry ((x^2)/4-x/2-1/4)^2
|
symmetry\:(\frac{x^{2}}{4}-\frac{x}{2}-\frac{1}{4})^{2}
|
slope of 15
|
slope\:15
|
asymptotes of (-4x+20)/(x^2-9x+20)
|
asymptotes\:\frac{-4x+20}{x^{2}-9x+20}
|
domain of (x^2+10x+21)/(x^2+4x-21)
|
domain\:\frac{x^{2}+10x+21}{x^{2}+4x-21}
|
inverse of f(x)=4-x/2
|
inverse\:f(x)=4-\frac{x}{2}
|
asymptotes of f(x)= 5/(x+2)
|
asymptotes\:f(x)=\frac{5}{x+2}
|
extreme points of f(x)=-16t^2+30t+5
|
extreme\:points\:f(x)=-16t^{2}+30t+5
|
inverse of f(x)=(x+9)/3
|
inverse\:f(x)=\frac{x+9}{3}
|
inverse of x^2-2x+9
|
inverse\:x^{2}-2x+9
|
inverse of 3/2 x+2
|
inverse\:\frac{3}{2}x+2
|
inverse of y=4x^2-16
|
inverse\:y=4x^{2}-16
|
domain of f(x)=(2x)/(1+x^2)
|
domain\:f(x)=\frac{2x}{1+x^{2}}
|
inverse of f(x)=(sqrt(3x-2))/5
|
inverse\:f(x)=\frac{\sqrt{3x-2}}{5}
|
domain of sqrt(25-x^2)+sqrt(x+2)
|
domain\:\sqrt{25-x^{2}}+\sqrt{x+2}
|
extreme points of f(x)=2x^3-30x^2+144x+8
|
extreme\:points\:f(x)=2x^{3}-30x^{2}+144x+8
|
asymptotes of f(x)=(6x^2)/(x-6)
|
asymptotes\:f(x)=\frac{6x^{2}}{x-6}
|
domain of f(x)= x/(x+1)
|
domain\:f(x)=\frac{x}{x+1}
|
domain of \sqrt[6]{x^2-8x-9}
|
domain\:\sqrt[6]{x^{2}-8x-9}
|
domain of f(x)=x^3+12x^2-3
|
domain\:f(x)=x^{3}+12x^{2}-3
|
domain of f(x)=(x^2-1)/(x^2+2x-3)
|
domain\:f(x)=\frac{x^{2}-1}{x^{2}+2x-3}
|
perpendicular x=-19(6,1)
|
perpendicular\:x=-19(6,1)
|
domain of f(x)=8+4/x
|
domain\:f(x)=8+\frac{4}{x}
|
line y=mx+b
|
line\:y=mx+b
|
line (0,-7)(-6,-2)
|
line\:(0,-7)(-6,-2)
|
domain of f(x)= 1/5 x-1/4
|
domain\:f(x)=\frac{1}{5}x-\frac{1}{4}
|
intercepts of f(x)=2\sqrt[3]{x+1}
|
intercepts\:f(x)=2\sqrt[3]{x+1}
|
inverse of f(x)=-1/6 x-3
|
inverse\:f(x)=-\frac{1}{6}x-3
|
periodicity of f(x)=-3sin(3x-pi)
|
periodicity\:f(x)=-3\sin(3x-\pi)
|
symmetry x^3+2x^2
|
symmetry\:x^{3}+2x^{2}
|
domain of f(x)= 2/(x-6)
|
domain\:f(x)=\frac{2}{x-6}
|
inverse of (2ln(x)-1)/(ln(x)+2)
|
inverse\:\frac{2\ln(x)-1}{\ln(x)+2}
|
midpoint (1,5)(5,8)
|
midpoint\:(1,5)(5,8)
|
slope of y=-8
|
slope\:y=-8
|
domain of f(x)=(x+9)/(x^2-25)
|
domain\:f(x)=\frac{x+9}{x^{2}-25}
|
domain of f(x)=3x+8
|
domain\:f(x)=3x+8
|
domain of f(x)=(x-8)/(4x^2)
|
domain\:f(x)=\frac{x-8}{4x^{2}}
|
domain of (1/(sqrt(x)))/(x^2-9)
|
domain\:\frac{\frac{1}{\sqrt{x}}}{x^{2}-9}
|