inverse of f(x)=(x^3)/2+1
|
inverse\:f(x)=\frac{x^{3}}{2}+1
|
symmetry-2x^2+8x-11
|
symmetry\:-2x^{2}+8x-11
|
intercepts of f(x)=(2x-2)/(x+2)
|
intercepts\:f(x)=\frac{2x-2}{x+2}
|
parity f(x)=sqrt(x-5)
|
parity\:f(x)=\sqrt{x-5}
|
domain of f(x)=\sqrt[3]{1/x}
|
domain\:f(x)=\sqrt[3]{\frac{1}{x}}
|
intercepts of (2x+7)/(2x-9)
|
intercepts\:\frac{2x+7}{2x-9}
|
extreme points of f(x)=x^2ln(x/4)
|
extreme\:points\:f(x)=x^{2}\ln(\frac{x}{4})
|
domain of x/(x^3+8)
|
domain\:\frac{x}{x^{3}+8}
|
critical points of f(x)=(x^2-2x+4)/(x-2)
|
critical\:points\:f(x)=\frac{x^{2}-2x+4}{x-2}
|
perpendicular x+2y=10
|
perpendicular\:x+2y=10
|
intercepts of f(x)=-4x^2+2x+2
|
intercepts\:f(x)=-4x^{2}+2x+2
|
intercepts of x^3-4x^2-4x+16
|
intercepts\:x^{3}-4x^{2}-4x+16
|
inverse of f(x)=y=2x+4
|
inverse\:f(x)=y=2x+4
|
range of (8+7x)/(6x-7)
|
range\:\frac{8+7x}{6x-7}
|
line (3,6)(1,-2)
|
line\:(3,6)(1,-2)
|
range of 2x-1
|
range\:2x-1
|
domain of f(x)=sqrt(1-4x)
|
domain\:f(x)=\sqrt{1-4x}
|
domain of ((2x^2+x))/(x^3+8x^2+15x)
|
domain\:\frac{(2x^{2}+x)}{x^{3}+8x^{2}+15x}
|
asymptotes of f(x)=((x^2+2x+3))/(x+1)
|
asymptotes\:f(x)=\frac{(x^{2}+2x+3)}{x+1}
|
shift y=1-cos(x)
|
shift\:y=1-\cos(x)
|
distance (21,-30)(3,8)
|
distance\:(21,-30)(3,8)
|
domain of y=sqrt(1-x^2)
|
domain\:y=\sqrt{1-x^{2}}
|
asymptotes of f(x)=(2x)/(sqrt(9x^2+1))
|
asymptotes\:f(x)=\frac{2x}{\sqrt{9x^{2}+1}}
|
midpoint (6,-5)(12,15)
|
midpoint\:(6,-5)(12,15)
|
range of f(x)=(-x^2)/(x^2-2x+8)
|
range\:f(x)=\frac{-x^{2}}{x^{2}-2x+8}
|
intercepts of f(x)=-0.16x^2+0.96x+6.44
|
intercepts\:f(x)=-0.16x^{2}+0.96x+6.44
|
inverse of (1/2)^x-1
|
inverse\:(\frac{1}{2})^{x}-1
|
domain of f(x)=sqrt(8-7x)
|
domain\:f(x)=\sqrt{8-7x}
|
asymptotes of f(x)=(x-2)/(2x-4)
|
asymptotes\:f(x)=\frac{x-2}{2x-4}
|
domain of f(x)= 2/(x^2-1)
|
domain\:f(x)=\frac{2}{x^{2}-1}
|
inverse of f(x)=\sqrt[3]{5x-1}+4
|
inverse\:f(x)=\sqrt[3]{5x-1}+4
|
inverse of 4/(x-1)
|
inverse\:\frac{4}{x-1}
|
domain of f(x)=(x^2)/(x-6)
|
domain\:f(x)=\frac{x^{2}}{x-6}
|
asymptotes of (7x)/(sqrt(x^2+10))
|
asymptotes\:\frac{7x}{\sqrt{x^{2}+10}}
|
parity f(x)=1111100001
|
parity\:f(x)=1111100001
|
midpoint (5,3)(2,6)
|
midpoint\:(5,3)(2,6)
|
inverse of f(x)=3x-x^2
|
inverse\:f(x)=3x-x^{2}
|
asymptotes of f(x)=x+2+7/(x-2)
|
asymptotes\:f(x)=x+2+\frac{7}{x-2}
|
shift 4sin(2x-(pi)/3)
|
shift\:4\sin(2x-\frac{\pi}{3})
|
asymptotes of 3/(x-2)
|
asymptotes\:\frac{3}{x-2}
|
distance (5,15)(2,14)
|
distance\:(5,15)(2,14)
|
domain of ((x-1)^{(2)})/(sqrt(x+1))
|
domain\:((x-1)^{(2)})/(\sqrt{x+1})
|
extreme points of f(x)=0.1x+24+((330)/x)
|
extreme\:points\:f(x)=0.1x+24+(\frac{330}{x})
|
midpoint (-2,0)(6,12)
|
midpoint\:(-2,0)(6,12)
|
critical points of f(x)=7xln(x)
|
critical\:points\:f(x)=7x\ln(x)
|
midpoint (1,4)(7,6)
|
midpoint\:(1,4)(7,6)
|
inverse of f(x)= 3/(sqrt(x+4))
|
inverse\:f(x)=\frac{3}{\sqrt{x+4}}
|
asymptotes of y=arctan((x-1)/(x+1))
|
asymptotes\:y=\arctan(\frac{x-1}{x+1})
|
slope intercept of (1,2)m=2
|
slope\:intercept\:(1,2)m=2
|
midpoint (9,-4)(2,-1)
|
midpoint\:(9,-4)(2,-1)
|
inverse of (1-4x)/(2x+9)
|
inverse\:\frac{1-4x}{2x+9}
|
inverse of f(x)=4y=x
|
inverse\:f(x)=4y=x
|
critical points of f(x)=3xsqrt(3x^2+2)
|
critical\:points\:f(x)=3x\sqrt{3x^{2}+2}
|
domain of f(x)=tan^{-1}(((x-1))/((x+1)))
|
domain\:f(x)=\tan^{-1}(\frac{(x-1)}{(x+1)})
|
domain of f(x)=sqrt(2x+1)-sqrt(x+1)
|
domain\:f(x)=\sqrt{2x+1}-\sqrt{x+1}
|
range of 3x+6
|
range\:3x+6
|
3x-1
|
3x-1
|
midpoint (-4,-3)(2,-7)
|
midpoint\:(-4,-3)(2,-7)
|
range of 2-x
|
range\:2-x
|
domain of f(x)=(3x-1)/((x+3)(x-1))
|
domain\:f(x)=\frac{3x-1}{(x+3)(x-1)}
|
inverse of e^{x+4}
|
inverse\:e^{x+4}
|
slope intercept of-5y+2x=5
|
slope\:intercept\:-5y+2x=5
|
domain of f(x)=(x^3)/9+3x^5-sqrt(3)
|
domain\:f(x)=\frac{x^{3}}{9}+3x^{5}-\sqrt{3}
|
slope intercept of-2x+y=-6
|
slope\:intercept\:-2x+y=-6
|
intercepts of f(x)=2x+y=1
|
intercepts\:f(x)=2x+y=1
|
intercepts of y=x-2
|
intercepts\:y=x-2
|
inverse of (y=tan(5x))
|
inverse\:(y=\tan(5x))
|
parity s(t)=sqrt((1+sin(t))/(1+cos(t)))
|
parity\:s(t)=\sqrt{\frac{1+\sin(t)}{1+\cos(t)}}
|
inflection points of sin^2(x)
|
inflection\:points\:\sin^{2}(x)
|
intercepts of f(x)=x-3
|
intercepts\:f(x)=x-3
|
asymptotes of f(x)=(4x^2+1)/(2x^2-9)
|
asymptotes\:f(x)=\frac{4x^{2}+1}{2x^{2}-9}
|
range of-4x+3
|
range\:-4x+3
|
domain of f(x)=3x+2
|
domain\:f(x)=3x+2
|
range of e^x
|
range\:e^{x}
|
domain of x^2+9
|
domain\:x^{2}+9
|
distance (3,18),(3,4)
|
distance\:(3,18),(3,4)
|
domain of f(x)=2sqrt(x)-3
|
domain\:f(x)=2\sqrt{x}-3
|
domain of y=sqrt(24+2x-2x^2)
|
domain\:y=\sqrt{24+2x-2x^{2}}
|
x^2+4x+5
|
x^{2}+4x+5
|
inverse of f(x)=2-2x^3
|
inverse\:f(x)=2-2x^{3}
|
domain of f(x)=(x-4)/(x^2-2x-15)
|
domain\:f(x)=\frac{x-4}{x^{2}-2x-15}
|
domain of 81x+80
|
domain\:81x+80
|
domain of f(x)=-x^2+3x
|
domain\:f(x)=-x^{2}+3x
|
inverse of f(x)=sqrt(8x+7)
|
inverse\:f(x)=\sqrt{8x+7}
|
periodicity of y=3sin(2x)
|
periodicity\:y=3\sin(2x)
|
domain of r(t)=(2t^2}{1-t^2}\frac{t+1)/t
|
domain\:r(t)=\frac{2t^{2}}{1-t^{2}}\frac{t+1}{t}
|
domain of f(x)=(sqrt(1-x))/(sqrt(x-1))
|
domain\:f(x)=\frac{\sqrt{1-x}}{\sqrt{x-1}}
|
domain of f(x)=sqrt(10^t-100)
|
domain\:f(x)=\sqrt{10^{t}-100}
|
slope of y=-2x-3
|
slope\:y=-2x-3
|
range of x^2-4x-5
|
range\:x^{2}-4x-5
|
range of g(x)=sin(x)+1
|
range\:g(x)=\sin(x)+1
|
range of x^2-4x+4
|
range\:x^{2}-4x+4
|
critical points of f(x)=(x+4)(x-1)^2
|
critical\:points\:f(x)=(x+4)(x-1)^{2}
|
range of f(x)=sqrt(x+5)
|
range\:f(x)=\sqrt{x+5}
|
inflection points of f(x)=xsqrt(9-x)
|
inflection\:points\:f(x)=x\sqrt{9-x}
|
asymptotes of (x^2+25)/x
|
asymptotes\:\frac{x^{2}+25}{x}
|
domain of y=-3
|
domain\:y=-3
|
domain of 3-2sqrt(-x)
|
domain\:3-2\sqrt{-x}
|
asymptotes of f(x)=ln(x^2-64)
|
asymptotes\:f(x)=\ln(x^{2}-64)
|
intercepts of f(x)=-2x^2
|
intercepts\:f(x)=-2x^{2}
|