range of sqrt(3-2x)
|
range\:\sqrt{3-2x}
|
domain of g(x)=(x^2+5)/(x+2)
|
domain\:g(x)=\frac{x^{2}+5}{x+2}
|
slope intercept of x-3y=3
|
slope\:intercept\:x-3y=3
|
domain of f(x)=(sqrt(x-4))/(x-11)
|
domain\:f(x)=\frac{\sqrt{x-4}}{x-11}
|
asymptotes of f(x)=(x^3)/(1-2x^3)
|
asymptotes\:f(x)=\frac{x^{3}}{1-2x^{3}}
|
inverse of f(x)=(3-x)/5
|
inverse\:f(x)=\frac{3-x}{5}
|
inverse of 2x^3+3
|
inverse\:2x^{3}+3
|
domain of f(x)=(2x+1)/(x^2-9)
|
domain\:f(x)=\frac{2x+1}{x^{2}-9}
|
asymptotes of f(x)=(x^2+x-12)/(-2x-2)
|
asymptotes\:f(x)=\frac{x^{2}+x-12}{-2x-2}
|
domain of f(x)=x^2-y-2x+4=0
|
domain\:f(x)=x^{2}-y-2x+4=0
|
intercepts of-4y^2+1
|
intercepts\:-4y^{2}+1
|
inflection points of-x^4+12x^3-12x+13
|
inflection\:points\:-x^{4}+12x^{3}-12x+13
|
inverse of f(x)=(\sqrt[5]{x+4})/8
|
inverse\:f(x)=\frac{\sqrt[5]{x+4}}{8}
|
intercepts of f(x)=3x-6
|
intercepts\:f(x)=3x-6
|
(|x|)/x
|
\frac{\left|x\right|}{x}
|
midpoint (-3,4)(4,0)
|
midpoint\:(-3,4)(4,0)
|
inverse of f(x)=25-x^2,x<= 25
|
inverse\:f(x)=25-x^{2},x\le\:25
|
distance (5,8)(10,20)
|
distance\:(5,8)(10,20)
|
monotone intervals f(x)=-(x-1)^2+5
|
monotone\:intervals\:f(x)=-(x-1)^{2}+5
|
parallel 3x+6y=-90
|
parallel\:3x+6y=-90
|
inverse of f(x)=(sqrt(2x+4))/3
|
inverse\:f(x)=\frac{\sqrt{2x+4}}{3}
|
monotone intervals xe[ 1/x ]
|
monotone\:intervals\:xe[\frac{1}{x}]
|
inverse of y=1-x/(10)
|
inverse\:y=1-\frac{x}{10}
|
domain of f(x)=2(x+1)^2-3
|
domain\:f(x)=2(x+1)^{2}-3
|
inflection points of x^3+9x
|
inflection\:points\:x^{3}+9x
|
critical points of (3x)/(9-x^2)
|
critical\:points\:\frac{3x}{9-x^{2}}
|
parity f(x)=5x^5-3x+1
|
parity\:f(x)=5x^{5}-3x+1
|
asymptotes of f(x)=log_{2}(x+5)
|
asymptotes\:f(x)=\log_{2}(x+5)
|
extreme points of f(x)= 1/(x^2+1)
|
extreme\:points\:f(x)=\frac{1}{x^{2}+1}
|
inflection points of x^4-2x^2+1
|
inflection\:points\:x^{4}-2x^{2}+1
|
range of 1/(sqrt(t))
|
range\:\frac{1}{\sqrt{t}}
|
inverse of-x^3-2
|
inverse\:-x^{3}-2
|
extreme points of f(x)=x^2+4x+3
|
extreme\:points\:f(x)=x^{2}+4x+3
|
slope intercept of f(x)=-0.388x+170.96
|
slope\:intercept\:f(x)=-0.388x+170.96
|
symmetry x^2+6x-2
|
symmetry\:x^{2}+6x-2
|
extreme points of f(x)=ln(5-6x^2)
|
extreme\:points\:f(x)=\ln(5-6x^{2})
|
domain of f(x)=(x^2+4)/(x-2)
|
domain\:f(x)=\frac{x^{2}+4}{x-2}
|
slope intercept of 3x+3y=24
|
slope\:intercept\:3x+3y=24
|
domain of f(x)= 2/((x-4)(-x+6))
|
domain\:f(x)=\frac{2}{(x-4)(-x+6)}
|
inverse of f(x)=sqrt(x+2)-9
|
inverse\:f(x)=\sqrt{x+2}-9
|
domain of f(x)=x-4+9x^2
|
domain\:f(x)=x-4+9x^{2}
|
inverse of f(x)=y=x^{1/2}+4
|
inverse\:f(x)=y=x^{\frac{1}{2}}+4
|
domain of (x^2-7x+12)/(x^2-9)
|
domain\:\frac{x^{2}-7x+12}{x^{2}-9}
|
intercepts of (4(x+1))/(x(x-4))
|
intercepts\:\frac{4(x+1)}{x(x-4)}
|
domain of (x^2)/((x-1))
|
domain\:\frac{x^{2}}{(x-1)}
|
critical points of 11000-x^3+36x^2+700x
|
critical\:points\:11000-x^{3}+36x^{2}+700x
|
inverse of f(x)=16+\sqrt[3]{x}
|
inverse\:f(x)=16+\sqrt[3]{x}
|
inverse of f(x)= 1/5 (x+18)^3-4
|
inverse\:f(x)=\frac{1}{5}(x+18)^{3}-4
|
domain of (x+5)/(x^2-16)
|
domain\:\frac{x+5}{x^{2}-16}
|
domain of (x^2+3)/2
|
domain\:\frac{x^{2}+3}{2}
|
intercepts of f(x)=y=x(x-4)
|
intercepts\:f(x)=y=x(x-4)
|
domain of f(x)= 1/(x^2+3x-10)
|
domain\:f(x)=\frac{1}{x^{2}+3x-10}
|
inverse of f(x)=(x-1)/(x+3)
|
inverse\:f(x)=\frac{x-1}{x+3}
|
intercepts of f(x)=y=-x-8
|
intercepts\:f(x)=y=-x-8
|
slope of 9x-4y=36
|
slope\:9x-4y=36
|
domain of f(x)= 1/4 sqrt(x-3)+6
|
domain\:f(x)=\frac{1}{4}\sqrt{x-3}+6
|
asymptotes of f(x)= x/(2x+1)
|
asymptotes\:f(x)=\frac{x}{2x+1}
|
intercepts of f(x)=6x+7y=42
|
intercepts\:f(x)=6x+7y=42
|
perpendicular y=8x-6,\at (3,6)
|
perpendicular\:y=8x-6,\at\:(3,6)
|
parity sec(x)dx
|
parity\:\sec(x)dx
|
inverse of f(x)= 9/(x-4)
|
inverse\:f(x)=\frac{9}{x-4}
|
inverse of y= x/((x^2+1))
|
inverse\:y=\frac{x}{(x^{2}+1)}
|
inverse of f(x)=-3/2 x+3/2
|
inverse\:f(x)=-\frac{3}{2}x+\frac{3}{2}
|
range of 6000-500x
|
range\:6000-500x
|
inverse of y=0.5x^2+2
|
inverse\:y=0.5x^{2}+2
|
slope intercept of-8y=-7x+20
|
slope\:intercept\:-8y=-7x+20
|
domain of f(x)=(sqrt(x-2))/(sqrt(5-x))
|
domain\:f(x)=\frac{\sqrt{x-2}}{\sqrt{5-x}}
|
range of f(x)=4e^{4x}
|
range\:f(x)=4e^{4x}
|
inverse of f(x)=((x+14))/(x-10)
|
inverse\:f(x)=\frac{(x+14)}{x-10}
|
domain of f(x)=8(x/2)-7
|
domain\:f(x)=8(\frac{x}{2})-7
|
range of 6x-2
|
range\:6x-2
|
inverse of f(x)=\sqrt[3]{x-12}
|
inverse\:f(x)=\sqrt[3]{x-12}
|
inverse of (e^x)/(1+2e^x)
|
inverse\:\frac{e^{x}}{1+2e^{x}}
|
asymptotes of f(x)=ln(x-1)
|
asymptotes\:f(x)=\ln(x-1)
|
domain of \sqrt[3]{x+7}
|
domain\:\sqrt[3]{x+7}
|
midpoint (-4,-1)(5,3)
|
midpoint\:(-4,-1)(5,3)
|
parallel y=4x+6(-3,3)
|
parallel\:y=4x+6(-3,3)
|
monotone intervals f(x)=xsqrt(100-x^2)
|
monotone\:intervals\:f(x)=x\sqrt{100-x^{2}}
|
parity f(x)=(5+x)/(e^{cos(x))}
|
parity\:f(x)=\frac{5+x}{e^{\cos(x)}}
|
shift sec(2x-3pi)
|
shift\:\sec(2x-3\pi)
|
extreme points of f(x)=2x^3-9x^2-240x
|
extreme\:points\:f(x)=2x^{3}-9x^{2}-240x
|
range of f(x)=ln(x-2)
|
range\:f(x)=\ln(x-2)
|
asymptotes of (x^2)/((x-2)^2)
|
asymptotes\:\frac{x^{2}}{(x-2)^{2}}
|
extreme points of ln(3-2x^2)
|
extreme\:points\:\ln(3-2x^{2})
|
inverse of f(x)=3-4x^2
|
inverse\:f(x)=3-4x^{2}
|
domain of 4/(x^2-4)
|
domain\:\frac{4}{x^{2}-4}
|
inverse of f(x)=sqrt(x^2-1)
|
inverse\:f(x)=\sqrt{x^{2}-1}
|
range of x^2-6x+7
|
range\:x^{2}-6x+7
|
domain of f(x)=2x-4
|
domain\:f(x)=2x-4
|
intercepts of f(x)=((3))/((x-2))
|
intercepts\:f(x)=\frac{(3)}{(x-2)}
|
perpendicular y=-1/3 x+3 2/3 ,\at x=15
|
perpendicular\:y=-\frac{1}{3}x+3\frac{2}{3},\at\:x=15
|
extreme points of f(x)=xsqrt(25-x^2)
|
extreme\:points\:f(x)=x\sqrt{25-x^{2}}
|
domain of x^2+4
|
domain\:x^{2}+4
|
domain of f(x)=x^2-49
|
domain\:f(x)=x^{2}-49
|
domain of f(x)=(x+4)/(x^3-4x)
|
domain\:f(x)=\frac{x+4}{x^{3}-4x}
|
intercepts of z^4+2z^3+6z^2+8z+8
|
intercepts\:z^{4}+2z^{3}+6z^{2}+8z+8
|
asymptotes of f(x)=-log_{1/5}(x-7)
|
asymptotes\:f(x)=-\log_{\frac{1}{5}}(x-7)
|
slope intercept of f(x)=2x-3
|
slope\:intercept\:f(x)=2x-3
|
sec^2
|
\sec^{2}
|
distance (2,1)(9,0)
|
distance\:(2,1)(9,0)
|