monotone intervals f(x)=x^3-5x^2+6
|
monotone\:intervals\:f(x)=x^{3}-5x^{2}+6
|
domain of y=b^x
|
domain\:y=b^{x}
|
inverse of 9-9/(x^2),x> 0
|
inverse\:9-\frac{9}{x^{2}},x\gt\:0
|
inverse of f(x)=(5x)/(6x-1)
|
inverse\:f(x)=\frac{5x}{6x-1}
|
inflection points of f(x)=(x+4)^{2/7}
|
inflection\:points\:f(x)=(x+4)^{\frac{2}{7}}
|
inverse of f(x)=2^{x-4}
|
inverse\:f(x)=2^{x-4}
|
domain of f(x)=ln(16-t^2)
|
domain\:f(x)=\ln(16-t^{2})
|
intercepts of f(x)=x^3-3x^2-x+3
|
intercepts\:f(x)=x^{3}-3x^{2}-x+3
|
inverse of f(x)= 5/(9+x)
|
inverse\:f(x)=\frac{5}{9+x}
|
periodicity of f(x)=4cos((pi)/3 x)
|
periodicity\:f(x)=4\cos(\frac{\pi}{3}x)
|
critical points of x^5ln(x)
|
critical\:points\:x^{5}\ln(x)
|
parity ln(sec(x))dx
|
parity\:\ln(\sec(x))dx
|
inverse of f(x)=(2x+1)/(x+2)
|
inverse\:f(x)=\frac{2x+1}{x+2}
|
intercepts of (x+1)(x-2)-2
|
intercepts\:(x+1)(x-2)-2
|
y=tan(x)
|
y=\tan(x)
|
midpoint (-3,6)(5,-6)
|
midpoint\:(-3,6)(5,-6)
|
intercepts of f(x)=-6x^2+384
|
intercepts\:f(x)=-6x^{2}+384
|
domain of f(x)=(x^2+2)/(3x^2-1)
|
domain\:f(x)=\frac{x^{2}+2}{3x^{2}-1}
|
monotone intervals f(x)=(e^x)/x
|
monotone\:intervals\:f(x)=\frac{e^{x}}{x}
|
inverse of f(x)=2sqrt(x-5)
|
inverse\:f(x)=2\sqrt{x-5}
|
asymptotes of f(x)=(6x^2+1)/(2x^2-3)
|
asymptotes\:f(x)=\frac{6x^{2}+1}{2x^{2}-3}
|
y=cot(x)
|
y=\cot(x)
|
range of f(x)=-sqrt(x+3)-2
|
range\:f(x)=-\sqrt{x+3}-2
|
domain of f(x)=sqrt(2-4x)-3
|
domain\:f(x)=\sqrt{2-4x}-3
|
inverse of f(x)=2x^2-3
|
inverse\:f(x)=2x^{2}-3
|
inverse of f(x)=2x+12
|
inverse\:f(x)=2x+12
|
range of f(x)=-sqrt(2x+3)
|
range\:f(x)=-\sqrt{2x+3}
|
domain of f(x)=(2,0)
|
domain\:f(x)=(2,0)
|
inverse of f(x)=sqrt(2x^2+5)
|
inverse\:f(x)=\sqrt{2x^{2}+5}
|
inverse of f(x)=5x^3-8
|
inverse\:f(x)=5x^{3}-8
|
monotone intervals f(x)=(x+8)/(sqrt(x))
|
monotone\:intervals\:f(x)=\frac{x+8}{\sqrt{x}}
|
extreme points of f(x)=-sqrt(x^2+8x+41)
|
extreme\:points\:f(x)=-\sqrt{x^{2}+8x+41}
|
domain of f(x)= 3/(\frac{x){x+3}}
|
domain\:f(x)=\frac{3}{\frac{x}{x+3}}
|
asymptotes of ((x-2)^2)/(x-2)
|
asymptotes\:\frac{(x-2)^{2}}{x-2}
|
asymptotes of (2x-1)/(3x-5)
|
asymptotes\:\frac{2x-1}{3x-5}
|
domain of sqrt(-22x^4)
|
domain\:\sqrt{-22x^{4}}
|
critical points of f(x)=x^{1/5}
|
critical\:points\:f(x)=x^{\frac{1}{5}}
|
domain of f(x)=2sqrt(x+5)+5
|
domain\:f(x)=2\sqrt{x+5}+5
|
inverse of f(x)=(2x)/(7x-3)
|
inverse\:f(x)=\frac{2x}{7x-3}
|
inverse of-2/(x+3)
|
inverse\:-\frac{2}{x+3}
|
intercepts of x^2+5x-14
|
intercepts\:x^{2}+5x-14
|
monotone intervals f(x)=sqrt(x-5)
|
monotone\:intervals\:f(x)=\sqrt{x-5}
|
inverse of f(x)=((x+2)(x+3))/(2(x+2))
|
inverse\:f(x)=\frac{(x+2)(x+3)}{2(x+2)}
|
domain of f(x)=(2x^2-x-1)/(x^2+1)
|
domain\:f(x)=\frac{2x^{2}-x-1}{x^{2}+1}
|
domain of (2x)/(3x^2-3)
|
domain\:\frac{2x}{3x^{2}-3}
|
asymptotes of f(x)=(-6x+5)/(7x+4)
|
asymptotes\:f(x)=\frac{-6x+5}{7x+4}
|
parity f(x)=x^2+2x+1
|
parity\:f(x)=x^{2}+2x+1
|
domain of f(x)=(x+1)/(x^2-2x+1)
|
domain\:f(x)=\frac{x+1}{x^{2}-2x+1}
|
domain of sqrt(5x)+5x-6
|
domain\:\sqrt{5x}+5x-6
|
inverse of-8+e^{ln(x^4)}
|
inverse\:-8+e^{\ln(x^{4})}
|
domain of f(x)=3x^2+5
|
domain\:f(x)=3x^{2}+5
|
domain of f(x)=-sqrt(x^2-9)
|
domain\:f(x)=-\sqrt{x^{2}-9}
|
domain of f(x)=7x+3
|
domain\:f(x)=7x+3
|
domain of y=sqrt(x^2+9)
|
domain\:y=\sqrt{x^{2}+9}
|
f(x)=x^5
|
f(x)=x^{5}
|
intercepts of f(x)=xe^{1/x}
|
intercepts\:f(x)=xe^{\frac{1}{x}}
|
domain of f(x)=(sqrt(11-2x))/(x-4)
|
domain\:f(x)=\frac{\sqrt{11-2x}}{x-4}
|
critical points of f(x)=5x^2sqrt(25-x^2)
|
critical\:points\:f(x)=5x^{2}\sqrt{25-x^{2}}
|
intercepts of f(x)= 1/3 (x-1)^2-3
|
intercepts\:f(x)=\frac{1}{3}(x-1)^{2}-3
|
asymptotes of f(x)=(x+5)/(x^2+9x+20)
|
asymptotes\:f(x)=\frac{x+5}{x^{2}+9x+20}
|
inverse of f(x)=2*x^2+x-2
|
inverse\:f(x)=2\cdot\:x^{2}+x-2
|
domain of-(1/3)^{x+4}
|
domain\:-(\frac{1}{3})^{x+4}
|
asymptotes of sqrt(x+2)
|
asymptotes\:\sqrt{x+2}
|
asymptotes of f(x)=(4x-3)/(6-5x)
|
asymptotes\:f(x)=\frac{4x-3}{6-5x}
|
inverse of 1/(x-2)
|
inverse\:\frac{1}{x-2}
|
inverse of 3x^{1/3}
|
inverse\:3x^{\frac{1}{3}}
|
midpoint (11,-3)(-10,2)
|
midpoint\:(11,-3)(-10,2)
|
domain of f(x)=(x-5)/(x+6)
|
domain\:f(x)=\frac{x-5}{x+6}
|
slope of y= 1/2 x-5
|
slope\:y=\frac{1}{2}x-5
|
y=-x+2
|
y=-x+2
|
inverse of f(x)=e^{sqrt((x+x^2))}
|
inverse\:f(x)=e^{\sqrt{(x+x^{2})}}
|
inverse of f(x)=((2-x))/((x+5))
|
inverse\:f(x)=\frac{(2-x)}{(x+5)}
|
inverse of f(x)=2x^{1/5}-4
|
inverse\:f(x)=2x^{\frac{1}{5}}-4
|
parity f(x)=11x^4cot(x)
|
parity\:f(x)=11x^{4}\cot(x)
|
line (-1, 1/20)(2, 16/5)
|
line\:(-1,\frac{1}{20})(2,\frac{16}{5})
|
domain of f(x)=(2x-3)/(3-2x)
|
domain\:f(x)=\frac{2x-3}{3-2x}
|
domain of f(x)= x/(x^{-1)}
|
domain\:f(x)=\frac{x}{x^{-1}}
|
inflection points of y= 1/(x^2+1)
|
inflection\:points\:y=\frac{1}{x^{2}+1}
|
domain of f(x)=sqrt(25-5x)
|
domain\:f(x)=\sqrt{25-5x}
|
inverse of f(x)=\sqrt[3]{x-3}-2
|
inverse\:f(x)=\sqrt[3]{x-3}-2
|
domain of sqrt(36-x^2)sqrt(x+2)
|
domain\:\sqrt{36-x^{2}}\sqrt{x+2}
|
domain of 2/(x^4)-4
|
domain\:\frac{2}{x^{4}}-4
|
domain of x+sqrt(x)
|
domain\:x+\sqrt{x}
|
domain of f(x)=2(x+3)
|
domain\:f(x)=2(x+3)
|
range of sqrt(2-x)
|
range\:\sqrt{2-x}
|
symmetry 2x^6-x
|
symmetry\:2x^{6}-x
|
range of f(x)=([(4x^2+1)])/(2x)
|
range\:f(x)=\frac{[(4x^{2}+1)]}{2x}
|
asymptotes of (x+4)/(x^2+7x+12)
|
asymptotes\:\frac{x+4}{x^{2}+7x+12}
|
asymptotes of f(x)=ln(x)+2
|
asymptotes\:f(x)=\ln(x)+2
|
parity f(x)=x^4
|
parity\:f(x)=x^{4}
|
domain of f(x)=(sqrt(5-x))/(sqrt(x^2-4))
|
domain\:f(x)=\frac{\sqrt{5-x}}{\sqrt{x^{2}-4}}
|
asymptotes of f(x)= 1/x-3
|
asymptotes\:f(x)=\frac{1}{x}-3
|
inverse of f(x)=6x^5+2
|
inverse\:f(x)=6x^{5}+2
|
asymptotes of f(x)=(5x)/(2x-6)
|
asymptotes\:f(x)=\frac{5x}{2x-6}
|
critical points of f(x)=((x-1))/(x^2+3)
|
critical\:points\:f(x)=\frac{(x-1)}{x^{2}+3}
|
asymptotes of f(x)=(x-2)/(x^2+6x)
|
asymptotes\:f(x)=\frac{x-2}{x^{2}+6x}
|
inverse of x^2-5x+6
|
inverse\:x^{2}-5x+6
|
extreme points of f(x)=(4x)/(x^2+4)
|
extreme\:points\:f(x)=\frac{4x}{x^{2}+4}
|
shift-2sin(4x-pi)
|
shift\:-2\sin(4x-\pi)
|
critical points of sqrt(9-x^2)
|
critical\:points\:\sqrt{9-x^{2}}
|