midpoint (4,5)(7,8)
|
midpoint\:(4,5)(7,8)
|
parity f(x)=(sqrt(1-x^2))/x
|
parity\:f(x)=\frac{\sqrt{1-x^{2}}}{x}
|
distance (2,3)(5,1)
|
distance\:(2,3)(5,1)
|
range of \sqrt[3]{x-3}-2
|
range\:\sqrt[3]{x-3}-2
|
shift y=120sin(20pi t-(pi)/2)
|
shift\:y=120\sin(20\pi\:t-\frac{\pi}{2})
|
asymptotes of f(x)=(-3)/(x+9)-6
|
asymptotes\:f(x)=\frac{-3}{x+9}-6
|
intercepts of f(x)=y=487=
|
intercepts\:f(x)=y=487=
|
inverse of f(x)= 1/(x^3)-2
|
inverse\:f(x)=\frac{1}{x^{3}}-2
|
intercepts of y=x^2+4x-1
|
intercepts\:y=x^{2}+4x-1
|
domain of (-1/(2sqrt(3-x)))
|
domain\:(-\frac{1}{2\sqrt{3-x}})
|
critical points of f(x)=x^2+8x+7
|
critical\:points\:f(x)=x^{2}+8x+7
|
domain of e^x
|
domain\:e^{x}
|
range of f(x)=(x+2)^2-1
|
range\:f(x)=(x+2)^{2}-1
|
domain of y=x+1
|
domain\:y=x+1
|
intercepts of f(x)=3x^2-24x+49
|
intercepts\:f(x)=3x^{2}-24x+49
|
extreme points of xe^{(-4x)}
|
extreme\:points\:xe^{(-4x)}
|
extreme points of 3x^4-18x^2
|
extreme\:points\:3x^{4}-18x^{2}
|
range of f(x)=4x^2+2
|
range\:f(x)=4x^{2}+2
|
asymptotes of f(x)=y=10^x
|
asymptotes\:f(x)=y=10^{x}
|
intercepts of f(x)=x^2+2x-7
|
intercepts\:f(x)=x^{2}+2x-7
|
inverse of 3/(x+6)
|
inverse\:\frac{3}{x+6}
|
domain of f(x)=(3x-3)/(sqrt(-x^2+2x+3))
|
domain\:f(x)=\frac{3x-3}{\sqrt{-x^{2}+2x+3}}
|
symmetry x^2-2x
|
symmetry\:x^{2}-2x
|
domain of 3/((x+2)(x-1))
|
domain\:\frac{3}{(x+2)(x-1)}
|
inverse of g(x)=x^2-8x+12
|
inverse\:g(x)=x^{2}-8x+12
|
domain of f(x)=x(x+13)+40
|
domain\:f(x)=x(x+13)+40
|
asymptotes of f(x)=(x^2+4)/(x+4)
|
asymptotes\:f(x)=\frac{x^{2}+4}{x+4}
|
extreme points of f(x)=x^3-12x+7
|
extreme\:points\:f(x)=x^{3}-12x+7
|
inverse of \sqrt[3]{x}-5
|
inverse\:\sqrt[3]{x}-5
|
extreme points of f(x)=x^3-9x^2+5
|
extreme\:points\:f(x)=x^{3}-9x^{2}+5
|
domain of (5x+1)/(7x+9)
|
domain\:\frac{5x+1}{7x+9}
|
intercepts of f(x)=2x+5y=20
|
intercepts\:f(x)=2x+5y=20
|
inverse of f(x)=6-5x^3
|
inverse\:f(x)=6-5x^{3}
|
domain of (sqrt(x^2-1))(1/(x+2))
|
domain\:(\sqrt{x^{2}-1})(\frac{1}{x+2})
|
shift f(t)=sin(2t-(pi)/3)-4
|
shift\:f(t)=\sin(2t-\frac{\pi}{3})-4
|
asymptotes of f(x)=(x^2-5x-3)/(2x+1)
|
asymptotes\:f(x)=\frac{x^{2}-5x-3}{2x+1}
|
domain of (x-1)/(x^2+11x+10)
|
domain\:\frac{x-1}{x^{2}+11x+10}
|
inverse of f(x)=3sqrt(x-1)
|
inverse\:f(x)=3\sqrt{x-1}
|
domain of f(x)=sqrt(-5x+30)
|
domain\:f(x)=\sqrt{-5x+30}
|
domain of 1/((x-1))
|
domain\:\frac{1}{(x-1)}
|
inflection points of f(x)=(25)/((x^2+3))
|
inflection\:points\:f(x)=\frac{25}{(x^{2}+3)}
|
inverse of f(x)= 1/2 x+3/4
|
inverse\:f(x)=\frac{1}{2}x+\frac{3}{4}
|
asymptotes of f(x)=2^x-2
|
asymptotes\:f(x)=2^{x}-2
|
parity f(x)=5x^2
|
parity\:f(x)=5x^{2}
|
slope intercept of y-3= 6/5 (x-5)
|
slope\:intercept\:y-3=\frac{6}{5}(x-5)
|
inverse of f(x)=((6x))/(x+7)
|
inverse\:f(x)=\frac{(6x)}{x+7}
|
domain of f(x)=ln(x-4)
|
domain\:f(x)=\ln(x-4)
|
inflection points of f(x)=e^{-3.5x^2}
|
inflection\:points\:f(x)=e^{-3.5x^{2}}
|
intercepts of y=2x^2+12x-8
|
intercepts\:y=2x^{2}+12x-8
|
asymptotes of 1/(x-1)+1
|
asymptotes\:\frac{1}{x-1}+1
|
inverse of 9-7x^3
|
inverse\:9-7x^{3}
|
intercepts of f(x)=((3x^2-108))/(x+1)
|
intercepts\:f(x)=\frac{(3x^{2}-108)}{x+1}
|
slope of 2x+5y=20
|
slope\:2x+5y=20
|
inverse of f(x)=(x+5)/3
|
inverse\:f(x)=\frac{x+5}{3}
|
inverse of x/(x-4)
|
inverse\:\frac{x}{x-4}
|
critical points of f(x)=(x-4)^3
|
critical\:points\:f(x)=(x-4)^{3}
|
inverse of f(x)=5x+4
|
inverse\:f(x)=5x+4
|
domain of f(t)=7t-3t^2
|
domain\:f(t)=7t-3t^{2}
|
range of y= 6/(sqrt(x))
|
range\:y=\frac{6}{\sqrt{x}}
|
range of f(x)=-x^2-4
|
range\:f(x)=-x^{2}-4
|
monotone intervals 1/x
|
monotone\:intervals\:\frac{1}{x}
|
parity y=x^{sin(x)}
|
parity\:y=x^{\sin(x)}
|
inverse of f(x)= 5/(2x-1)
|
inverse\:f(x)=\frac{5}{2x-1}
|
inverse of f(x)=\sqrt[3]{x}+3
|
inverse\:f(x)=\sqrt[3]{x}+3
|
range of f(x)=(x-3)^2
|
range\:f(x)=(x-3)^{2}
|
inverse of f(x)=(x+9)/(x+5)
|
inverse\:f(x)=\frac{x+9}{x+5}
|
y=x^2-2x+3
|
y=x^{2}-2x+3
|
inflection points of x^3-6x^2-63x
|
inflection\:points\:x^{3}-6x^{2}-63x
|
inverse of 4x
|
inverse\:4x
|
distance (-3,-1),(-4,-0)
|
distance\:(-3,-1),(-4,-0)
|
vertex f(x)=y=x^2+4x-5
|
vertex\:f(x)=y=x^{2}+4x-5
|
range of y=(-3)/(12-x-x^2)
|
range\:y=\frac{-3}{12-x-x^{2}}
|
inverse of y= x/(x-2)
|
inverse\:y=\frac{x}{x-2}
|
domain of f(x)= 7/(4-2x)
|
domain\:f(x)=\frac{7}{4-2x}
|
domain of g(x)=(2x)/(sqrt(x^2+2x-24))
|
domain\:g(x)=\frac{2x}{\sqrt{x^{2}+2x-24}}
|
intercepts of f(x)=2x^2+8x-34
|
intercepts\:f(x)=2x^{2}+8x-34
|
inverse of f(x)= 1/(-x+3)
|
inverse\:f(x)=\frac{1}{-x+3}
|
intercepts of f(x)=y=x^2+4x+4
|
intercepts\:f(x)=y=x^{2}+4x+4
|
slope of y=6x+2
|
slope\:y=6x+2
|
inverse of f(x)=(7x)/(5x-9)
|
inverse\:f(x)=\frac{7x}{5x-9}
|
range of f(x)= 1/(x^2+19)
|
range\:f(x)=\frac{1}{x^{2}+19}
|
extreme points of f(x)= 4/(x+1)
|
extreme\:points\:f(x)=\frac{4}{x+1}
|
inflection points of f(x)=x+1/x
|
inflection\:points\:f(x)=x+\frac{1}{x}
|
inflection points of 5/(x-7)
|
inflection\:points\:\frac{5}{x-7}
|
distance (-1,8)(3,-6)
|
distance\:(-1,8)(3,-6)
|
parity f(x)=-x^5-1
|
parity\:f(x)=-x^{5}-1
|
domain of log_{4}(x)
|
domain\:\log_{4}(x)
|
inverse of y=3^{x+1}-4
|
inverse\:y=3^{x+1}-4
|
asymptotes of (8x^2+26x-7)/(4x-1)
|
asymptotes\:\frac{8x^{2}+26x-7}{4x-1}
|
domain of f(x)=-5x^4-x^3+2x^2
|
domain\:f(x)=-5x^{4}-x^{3}+2x^{2}
|
slope of 5x
|
slope\:5x
|
domain of f(x)=5x-7
|
domain\:f(x)=5x-7
|
asymptotes of f(x)=(5x+6)/(x^2-9x+18)
|
asymptotes\:f(x)=\frac{5x+6}{x^{2}-9x+18}
|
inverse of f(x)=(-5x+8)/(6x-10)
|
inverse\:f(x)=\frac{-5x+8}{6x-10}
|
domain of sqrt(56-(x^2-x))
|
domain\:\sqrt{56-(x^{2}-x)}
|
domain of f(x)=((x+2))/(x^2-4)
|
domain\:f(x)=\frac{(x+2)}{x^{2}-4}
|
domain of x(x^2-4)
|
domain\:x(x^{2}-4)
|
range of g(x)=-(x+1)^3+3
|
range\:g(x)=-(x+1)^{3}+3
|
inverse of f(x)=2x^2+3x+5
|
inverse\:f(x)=2x^{2}+3x+5
|
shift 4csc((5pi)/3 x-(20pi)/3)
|
shift\:4\csc(\frac{5\pi}{3}x-\frac{20\pi}{3})
|