slope of y=x-1
|
slope\:y=x-1
|
midpoint (-15,2)(-6,-4)
|
midpoint\:(-15,2)(-6,-4)
|
range of sqrt(-x+4)
|
range\:\sqrt{-x+4}
|
domain of 1/((x-3)^2)
|
domain\:\frac{1}{(x-3)^{2}}
|
range of y=2sin(x)
|
range\:y=2\sin(x)
|
domain of f(x)= 1/6 ln(x)-6
|
domain\:f(x)=\frac{1}{6}\ln(x)-6
|
x
|
x
|
asymptotes of f(x)=sec(x)
|
asymptotes\:f(x)=\sec(x)
|
critical points of f(x)=(x^2)/(4x-3)
|
critical\:points\:f(x)=\frac{x^{2}}{4x-3}
|
asymptotes of f(x)=4x^3-9x^2+6x
|
asymptotes\:f(x)=4x^{3}-9x^{2}+6x
|
monotone intervals (x+8)/(x+1)
|
monotone\:intervals\:\frac{x+8}{x+1}
|
asymptotes of f(x)=(x+8)/x
|
asymptotes\:f(x)=\frac{x+8}{x}
|
inverse of f(x)=-9/2 x^5
|
inverse\:f(x)=-\frac{9}{2}x^{5}
|
critical points of (x^2+24x-3)
|
critical\:points\:(x^{2}+24x-3)
|
perpendicular y=-2x+6,\at (1,6)
|
perpendicular\:y=-2x+6,\at\:(1,6)
|
midpoint (-10,-9)(0,1)
|
midpoint\:(-10,-9)(0,1)
|
midpoint (-2,-4)(-7,-5)
|
midpoint\:(-2,-4)(-7,-5)
|
global extreme points of f(x)=x^3-3x+8
|
global\:extreme\:points\:f(x)=x^{3}-3x+8
|
parallel 5x+6y=7,\at (5,-2)
|
parallel\:5x+6y=7,\at\:(5,-2)
|
inverse of f(x)=(7x)/(x+2)
|
inverse\:f(x)=\frac{7x}{x+2}
|
critical points of x^3+3(27-3x^2)^2+7
|
critical\:points\:x^{3}+3(27-3x^{2})^{2}+7
|
midpoint (2,3)(-5,-7)
|
midpoint\:(2,3)(-5,-7)
|
slope of 4x+5y=7
|
slope\:4x+5y=7
|
parity f(x)=-9x^5+6+x^2
|
parity\:f(x)=-9x^{5}+6+x^{2}
|
extreme points of f(x)=0
|
extreme\:points\:f(x)=0
|
inverse of f(x)=x^2-6,x>= 0
|
inverse\:f(x)=x^{2}-6,x\ge\:0
|
inflection points of y=x^4-16x^2
|
inflection\:points\:y=x^{4}-16x^{2}
|
inverse of s
|
inverse\:s
|
perpendicular y=5x-2
|
perpendicular\:y=5x-2
|
inverse of f(x)=-1/(2x)
|
inverse\:f(x)=-\frac{1}{2x}
|
inverse of y=5^{1/x}
|
inverse\:y=5^{\frac{1}{x}}
|
domain of f(x)=sqrt(3x-21)
|
domain\:f(x)=\sqrt{3x-21}
|
inverse of (541)
|
inverse\:(541)
|
range of f(x)=\sqrt[3]{x-1}+2
|
range\:f(x)=\sqrt[3]{x-1}+2
|
domain of f(x)=((x+1))/(x^2-4x-12)
|
domain\:f(x)=\frac{(x+1)}{x^{2}-4x-12}
|
inverse of f(x)=-sqrt(x+4)
|
inverse\:f(x)=-\sqrt{x+4}
|
midpoint (0,6)(0,0)
|
midpoint\:(0,6)(0,0)
|
domain of ((x+3))/((x-2))
|
domain\:\frac{(x+3)}{(x-2)}
|
asymptotes of (x-7)/(x-1)
|
asymptotes\:\frac{x-7}{x-1}
|
domain of 5x^2+8
|
domain\:5x^{2}+8
|
domain of y=sqrt(x+3)-4
|
domain\:y=\sqrt{x+3}-4
|
amplitude of sin(x-pi)
|
amplitude\:\sin(x-\pi)
|
domain of f(x)=sqrt(5x-5)+1
|
domain\:f(x)=\sqrt{5x-5}+1
|
inverse of f(x)=2x-6
|
inverse\:f(x)=2x-6
|
intercepts of (4x-20)/(x-5)
|
intercepts\:\frac{4x-20}{x-5}
|
slope intercept of x-4y=-36
|
slope\:intercept\:x-4y=-36
|
midpoint (2,-2)(-1,4)
|
midpoint\:(2,-2)(-1,4)
|
domain of f(x)=(sqrt(x-1))/(x^2-16)
|
domain\:f(x)=\frac{\sqrt{x-1}}{x^{2}-16}
|
range of f(x)=-2x^2-2x+2
|
range\:f(x)=-2x^{2}-2x+2
|
intercepts of f(x)=2x+3y=6
|
intercepts\:f(x)=2x+3y=6
|
inverse of f(x)=\sqrt[3]{x-4}
|
inverse\:f(x)=\sqrt[3]{x-4}
|
domain of (32)/y-(y+1)/(y+7)
|
domain\:\frac{32}{y}-\frac{y+1}{y+7}
|
intercepts of f(x)=y=2x-3,x+y=-5
|
intercepts\:f(x)=y=2x-3,x+y=-5
|
domain of =(x-3)/(x-4)
|
domain\:=\frac{x-3}{x-4}
|
range of x^2-4x
|
range\:x^{2}-4x
|
intercepts of f(x)=2x^3+15x^2+7x
|
intercepts\:f(x)=2x^{3}+15x^{2}+7x
|
inverse of f(x)=((x-2))/((4x+6))
|
inverse\:f(x)=\frac{(x-2)}{(4x+6)}
|
inverse of 3sin(x)
|
inverse\:3\sin(x)
|
line 4y+16=0
|
line\:4y+16=0
|
range of f(x)=2x^2-4x-1
|
range\:f(x)=2x^{2}-4x-1
|
inverse of x^2-6x+11
|
inverse\:x^{2}-6x+11
|
range of f(x)=-sqrt(81-x^2)
|
range\:f(x)=-\sqrt{81-x^{2}}
|
inverse of f(x)= 1/3 (x-2.1)^2+7.9
|
inverse\:f(x)=\frac{1}{3}(x-2.1)^{2}+7.9
|
line y=-x/4+5
|
line\:y=-\frac{x}{4}+5
|
inverse of f(x)=(x+8)^2
|
inverse\:f(x)=(x+8)^{2}
|
amplitude of-6cos(-4x-(pi)/8)
|
amplitude\:-6\cos(-4x-\frac{\pi}{8})
|
extreme points of f(x)=(2x+1)e^{3x}
|
extreme\:points\:f(x)=(2x+1)e^{3x}
|
intercepts of f(x)=x^2+2x-3
|
intercepts\:f(x)=x^{2}+2x-3
|
extreme points of s/(s^2+4s+5)
|
extreme\:points\:\frac{s}{s^{2}+4s+5}
|
domain of 2x^2-5
|
domain\:2x^{2}-5
|
extreme points of f(x)=5x-15x^{1/3}
|
extreme\:points\:f(x)=5x-15x^{\frac{1}{3}}
|
domain of (x-4)/(x^2-16)
|
domain\:\frac{x-4}{x^{2}-16}
|
domain of f(x)=(-5x-6)/(-15x-28)
|
domain\:f(x)=\frac{-5x-6}{-15x-28}
|
range of 1/(x-2)
|
range\:\frac{1}{x-2}
|
domain of (sqrt(x-3))/(x-6)
|
domain\:\frac{\sqrt{x-3}}{x-6}
|
inflection points of-3cos(4x)
|
inflection\:points\:-3\cos(4x)
|
inflection points of x^5+5x^4
|
inflection\:points\:x^{5}+5x^{4}
|
domain of sqrt(6x-18)
|
domain\:\sqrt{6x-18}
|
line (5,-9)(-2,y)
|
line\:(5,-9)(-2,y)
|
critical points of f(x)= x/(x^2-x+1)
|
critical\:points\:f(x)=\frac{x}{x^{2}-x+1}
|
critical points of x^2-4x+13
|
critical\:points\:x^{2}-4x+13
|
inverse of f(x)=sqrt(x)-2
|
inverse\:f(x)=\sqrt{x}-2
|
inverse of tan(2x-5)
|
inverse\:\tan(2x-5)
|
domain of f(x)=(2x^2-3)/((x^2-9)(x^2-4))
|
domain\:f(x)=\frac{2x^{2}-3}{(x^{2}-9)(x^{2}-4)}
|
inverse of 4/(3-x)
|
inverse\:\frac{4}{3-x}
|
inverse of f(x)=5x+7
|
inverse\:f(x)=5x+7
|
slope intercept of 4/3
|
slope\:intercept\:\frac{4}{3}
|
distance (-1,4),(-4,1)
|
distance\:(-1,4),(-4,1)
|
inverse of f(x)=sec(1/x)
|
inverse\:f(x)=\sec(\frac{1}{x})
|
inverse of 0.8sqrt(3.7(x+7))+5.3
|
inverse\:0.8\sqrt{3.7(x+7)}+5.3
|
critical points of 3xsqrt(2x^2+4)
|
critical\:points\:3x\sqrt{2x^{2}+4}
|
line (3/2 ,)(0,)
|
line\:(\frac{3}{2},)(0,)
|
domain of (6x-5)/2
|
domain\:\frac{6x-5}{2}
|
line (1,1),(3,2)
|
line\:(1,1),(3,2)
|
domain of f(x)=\sqrt[3]{1-x}
|
domain\:f(x)=\sqrt[3]{1-x}
|
slope intercept of 3x-9y=-2
|
slope\:intercept\:3x-9y=-2
|
extreme points of f(x)=7x^4-42x^2
|
extreme\:points\:f(x)=7x^{4}-42x^{2}
|
domain of f(x)=sqrt(\sqrt{x^2-49)-49}
|
domain\:f(x)=\sqrt{\sqrt{x^{2}-49}-49}
|
critical points of ((x^3-x))/(1+x^2)
|
critical\:points\:\frac{(x^{3}-x)}{1+x^{2}}
|
symmetry x^5+3x^4-25x^3-79x^2+100
|
symmetry\:x^{5}+3x^{4}-25x^{3}-79x^{2}+100
|