asymptotes of f(x)=(6x-12x^9)/(3x^3+7)
|
asymptotes\:f(x)=\frac{6x-12x^{9}}{3x^{3}+7}
|
inverse of f(x)=((2x-1))/(x+3)
|
inverse\:f(x)=\frac{(2x-1)}{x+3}
|
domain of h(x)=sqrt(x-10)
|
domain\:h(x)=\sqrt{x-10}
|
domain of f(x)= 2/(sqrt(4x-3))
|
domain\:f(x)=\frac{2}{\sqrt{4x-3}}
|
asymptotes of f(x)=(4x)/(2x+3)
|
asymptotes\:f(x)=\frac{4x}{2x+3}
|
parity (x-2)/(2x^4-x^3+4x-3)
|
parity\:\frac{x-2}{2x^{4}-x^{3}+4x-3}
|
inverse of f(x)=5sqrt(x-2)
|
inverse\:f(x)=5\sqrt{x-2}
|
slope of-6x+3y=-9
|
slope\:-6x+3y=-9
|
critical points of x^3-24x^2+144x+3
|
critical\:points\:x^{3}-24x^{2}+144x+3
|
domain of f(x)= 1/(x-2)-3
|
domain\:f(x)=\frac{1}{x-2}-3
|
domain of f(x)= 2/(x-2)
|
domain\:f(x)=\frac{2}{x-2}
|
inverse of f(x)=(7-x)^{1/6}
|
inverse\:f(x)=(7-x)^{\frac{1}{6}}
|
inverse of f(x)=e^{9x-2}
|
inverse\:f(x)=e^{9x-2}
|
asymptotes of f(x)=(x+2)/(3x^2+8x-3)
|
asymptotes\:f(x)=\frac{x+2}{3x^{2}+8x-3}
|
intercepts of f(x)=y=x-3
|
intercepts\:f(x)=y=x-3
|
inverse of f(x)=e^y
|
inverse\:f(x)=e^{y}
|
domain of y= 4/((2x^2-7x-4))
|
domain\:y=\frac{4}{(2x^{2}-7x-4)}
|
x^2+64
|
x^{2}+64
|
slope of A(4,1),(-1/3)
|
slope\:A(4,1),(-\frac{1}{3})
|
domain of f(x)=(1/(2-x))+(3/(x+4))
|
domain\:f(x)=(\frac{1}{2-x})+(\frac{3}{x+4})
|
parallel 2x+7y=9,\at (-5,-1)
|
parallel\:2x+7y=9,\at\:(-5,-1)
|
midpoint (8,6)(1,-6)
|
midpoint\:(8,6)(1,-6)
|
domain of x^2-6x-1
|
domain\:x^{2}-6x-1
|
inverse of (5x-3)/(2x+5)
|
inverse\:\frac{5x-3}{2x+5}
|
domain of f(x)=sqrt(-x)+7
|
domain\:f(x)=\sqrt{-x}+7
|
domain of f(x)=sqrt(t+4)
|
domain\:f(x)=\sqrt{t+4}
|
asymptotes of f(x)=(4x+8)/(3x-2)
|
asymptotes\:f(x)=\frac{4x+8}{3x-2}
|
slope intercept of-4x+2y=8
|
slope\:intercept\:-4x+2y=8
|
inflection points of f(x)=-x^4+16x^3-96x
|
inflection\:points\:f(x)=-x^{4}+16x^{3}-96x
|
domain of f(x)=log_{2}(x)-2
|
domain\:f(x)=\log_{2}(x)-2
|
inverse of g(x)= 4/(x+3)+1
|
inverse\:g(x)=\frac{4}{x+3}+1
|
range of f(x)= 4/x
|
range\:f(x)=\frac{4}{x}
|
inverse of f(x)=(5x)/(3x-4)
|
inverse\:f(x)=\frac{5x}{3x-4}
|
asymptotes of (x^2+4x+3)/x
|
asymptotes\:\frac{x^{2}+4x+3}{x}
|
intercepts of f(x)=x*e^{1/x}
|
intercepts\:f(x)=x\cdot\:e^{\frac{1}{x}}
|
critical points of f(x)=2x^3-3x^2-36x+5
|
critical\:points\:f(x)=2x^{3}-3x^{2}-36x+5
|
inverse of f(x)=\sqrt[11]{x}
|
inverse\:f(x)=\sqrt[11]{x}
|
range of f(x)=(9x)/(2x-9)
|
range\:f(x)=\frac{9x}{2x-9}
|
inflection points of ln(5-4x^2)
|
inflection\:points\:\ln(5-4x^{2})
|
intercepts of f(x)=-3x^2
|
intercepts\:f(x)=-3x^{2}
|
y=x^2+2x
|
y=x^{2}+2x
|
asymptotes of f(x)=(x+3)/(x(x-2))
|
asymptotes\:f(x)=\frac{x+3}{x(x-2)}
|
intercepts of f(x)=x^2y-x^2+4y=0
|
intercepts\:f(x)=x^{2}y-x^{2}+4y=0
|
asymptotes of f(x)=(10)/x
|
asymptotes\:f(x)=\frac{10}{x}
|
domain of sqrt(36-x^2)-sqrt(x+2)
|
domain\:\sqrt{36-x^{2}}-\sqrt{x+2}
|
2x^2
|
2x^{2}
|
midpoint (2,7)(6,3)
|
midpoint\:(2,7)(6,3)
|
symmetry 3y^3=5x^3+4
|
symmetry\:3y^{3}=5x^{3}+4
|
domain of 3/(x-4)+sqrt(x-3)
|
domain\:\frac{3}{x-4}+\sqrt{x-3}
|
inverse of f(x)= 2/(x-3)
|
inverse\:f(x)=\frac{2}{x-3}
|
intercepts of (-3x+6)/(x^2-4)
|
intercepts\:\frac{-3x+6}{x^{2}-4}
|
inflection points of f(x)=x^3-6x^2+9x
|
inflection\:points\:f(x)=x^{3}-6x^{2}+9x
|
range of sqrt(27)
|
range\:\sqrt{27}
|
domain of 4/(x^2+1)
|
domain\:\frac{4}{x^{2}+1}
|
domain of 2x-5
|
domain\:2x-5
|
range of 3ln(x)
|
range\:3\ln(x)
|
vertex f(x)=y=(x-3)^2
|
vertex\:f(x)=y=(x-3)^{2}
|
asymptotes of f(x)=3x^{2/3}-2x
|
asymptotes\:f(x)=3x^{\frac{2}{3}}-2x
|
range of (8x)/(7x-3)
|
range\:\frac{8x}{7x-3}
|
domain of y= 9/(x+5)
|
domain\:y=\frac{9}{x+5}
|
shift f(x)=sin(2x+(pi)/6)
|
shift\:f(x)=\sin(2x+\frac{\pi}{6})
|
extreme points of f(x)=2pi r^2+(500)/r
|
extreme\:points\:f(x)=2\pi\:r^{2}+\frac{500}{r}
|
asymptotes of (y(y-5))/(y^2-y+1)
|
asymptotes\:\frac{y(y-5)}{y^{2}-y+1}
|
range of f(x)= 1/6 x
|
range\:f(x)=\frac{1}{6}x
|
domain of f(x)=(x+4)/(1-x)
|
domain\:f(x)=\frac{x+4}{1-x}
|
inverse of f(x)=-e^{(-x)}+e^x
|
inverse\:f(x)=-e^{(-x)}+e^{x}
|
asymptotes of (-3x)/(2x+5)
|
asymptotes\:\frac{-3x}{2x+5}
|
slope intercept of 1/2 x-30
|
slope\:intercept\:\frac{1}{2}x-30
|
intercepts of f(y)=7x-2y=25
|
intercepts\:f(y)=7x-2y=25
|
midpoint (3sqrt(3),7sqrt(5))(sqrt(3),-sqrt(5))
|
midpoint\:(3\sqrt{3},7\sqrt{5})(\sqrt{3},-\sqrt{5})
|
y=2x+2
|
y=2x+2
|
domain of sqrt(4x-3)
|
domain\:\sqrt{4x-3}
|
domain of y=(x^2+x-1)/x
|
domain\:y=\frac{x^{2}+x-1}{x}
|
domain of x/(x^2-5x-14)
|
domain\:\frac{x}{x^{2}-5x-14}
|
inverse of f(x)=((x-4))/3
|
inverse\:f(x)=\frac{(x-4)}{3}
|
asymptotes of f(x)=-(1/2)^x+5
|
asymptotes\:f(x)=-(\frac{1}{2})^{x}+5
|
intercepts of f(x)=y=5x+5
|
intercepts\:f(x)=y=5x+5
|
critical points of f(x)=x^3-e^{0.5x}
|
critical\:points\:f(x)=x^{3}-e^{0.5x}
|
inverse of f(x)=11-x^2,x>= 0
|
inverse\:f(x)=11-x^{2},x\ge\:0
|
critical points of f(x)=x^2+9
|
critical\:points\:f(x)=x^{2}+9
|
inverse of f(x)=(x-11)^2
|
inverse\:f(x)=(x-11)^{2}
|
intercepts of x^3-3x^2+3x-1
|
intercepts\:x^{3}-3x^{2}+3x-1
|
inverse of x/(sqrt(4-x^2))
|
inverse\:\frac{x}{\sqrt{4-x^{2}}}
|
domain of g(x)=x^3-5
|
domain\:g(x)=x^{3}-5
|
domain of-(19)/((3+t)^2)
|
domain\:-\frac{19}{(3+t)^{2}}
|
asymptotes of f(x)=((2x-4))/(x^2-6x+8)
|
asymptotes\:f(x)=\frac{(2x-4)}{x^{2}-6x+8}
|
slope intercept of x-2y=3
|
slope\:intercept\:x-2y=3
|
inverse of (5x)/(6x-1)
|
inverse\:\frac{5x}{6x-1}
|
asymptotes of (x^3)/(1-2x^3)
|
asymptotes\:\frac{x^{3}}{1-2x^{3}}
|
asymptotes of f(x)=(x-4)/(1-x)
|
asymptotes\:f(x)=\frac{x-4}{1-x}
|
symmetry f(x)=x^2-1
|
symmetry\:f(x)=x^{2}-1
|
inverse of f(x)=8x+1
|
inverse\:f(x)=8x+1
|
asymptotes of 5e^{-x}
|
asymptotes\:5e^{-x}
|
intercepts of ((x^2-4))/(x^3+x^2-4x-4)
|
intercepts\:\frac{(x^{2}-4)}{x^{3}+x^{2}-4x-4}
|
domain of f(x)=sqrt(-32-20x-3x^2)
|
domain\:f(x)=\sqrt{-32-20x-3x^{2}}
|
line (2,-2)(9,3)
|
line\:(2,-2)(9,3)
|
inverse of sqrt(4-x^2)
|
inverse\:\sqrt{4-x^{2}}
|
inverse of 1/(x+13)
|
inverse\:\frac{1}{x+13}
|
slope of-3x-4y=-4
|
slope\:-3x-4y=-4
|
periodicity of f(x)=2sin(1/2 x)
|
periodicity\:f(x)=2\sin(\frac{1}{2}x)
|