inflection points of f(x)=x-sin(x)
|
inflection\:points\:f(x)=x-\sin(x)
|
domain of f(x)=sqrt(4-7x)
|
domain\:f(x)=\sqrt{4-7x}
|
slope of 5x-2
|
slope\:5x-2
|
critical points of 3/(x+2)
|
critical\:points\:\frac{3}{x+2}
|
shift f(x)=-2sin(3x-(pi)/6)+1
|
shift\:f(x)=-2\sin(3x-\frac{\pi}{6})+1
|
extreme points of f(x)=\sqrt[3]{x+2}
|
extreme\:points\:f(x)=\sqrt[3]{x+2}
|
domain of f(x)= 2/(x^2-2x-3)
|
domain\:f(x)=\frac{2}{x^{2}-2x-3}
|
parity f(x)=-x^2
|
parity\:f(x)=-x^{2}
|
domain of f(x)=sqrt(-9x+6)
|
domain\:f(x)=\sqrt{-9x+6}
|
distance (-3,0)(2,3)
|
distance\:(-3,0)(2,3)
|
inverse of f(x)=4x^2-1
|
inverse\:f(x)=4x^{2}-1
|
slope of y=-4x
|
slope\:y=-4x
|
inverse of-4x
|
inverse\:-4x
|
inflection points of f(x)=12x^2+12x+1
|
inflection\:points\:f(x)=12x^{2}+12x+1
|
domain of y=x2+2
|
domain\:y=x2+2
|
inverse of f(x)=2x^2-12x+23
|
inverse\:f(x)=2x^{2}-12x+23
|
domain of f(x)=(x^2+x-6)/(x^2+6x+9)
|
domain\:f(x)=\frac{x^{2}+x-6}{x^{2}+6x+9}
|
intercepts of y^2-3y
|
intercepts\:y^{2}-3y
|
inverse of f(x)=6-5x
|
inverse\:f(x)=6-5x
|
asymptotes of f(x)=(x^2+3)/(x+3)
|
asymptotes\:f(x)=\frac{x^{2}+3}{x+3}
|
inverse of f(x)=16
|
inverse\:f(x)=16
|
domain of f(x)=(2-x^2)/(x^2+4x-32)
|
domain\:f(x)=\frac{2-x^{2}}{x^{2}+4x-32}
|
extreme points of f(x)=x^2+9x+10
|
extreme\:points\:f(x)=x^{2}+9x+10
|
critical points of y=2x^2+(108)/x
|
critical\:points\:y=2x^{2}+\frac{108}{x}
|
range of-ln(x-3)+e
|
range\:-\ln(x-3)+e
|
intercepts of f(x)=(2x+7)/(3x-7)
|
intercepts\:f(x)=\frac{2x+7}{3x-7}
|
domain of 1/x-5
|
domain\:\frac{1}{x}-5
|
parity f(x)=2x
|
parity\:f(x)=2x
|
parity f(x)=x^7+9
|
parity\:f(x)=x^{7}+9
|
inflection points of 3cos^2(x)-6sin(x)
|
inflection\:points\:3\cos^{2}(x)-6\sin(x)
|
domain of f(x)=(7x)/(x^2-4)
|
domain\:f(x)=\frac{7x}{x^{2}-4}
|
asymptotes of (x^2+1)/(3x-2x^2)
|
asymptotes\:\frac{x^{2}+1}{3x-2x^{2}}
|
intercepts of f(x)=(x+2)/(x^2+2x-8)
|
intercepts\:f(x)=\frac{x+2}{x^{2}+2x-8}
|
inverse of y=\sqrt[4]{x-1}
|
inverse\:y=\sqrt[4]{x-1}
|
slope intercept of y+1/2 =-3(x+2)
|
slope\:intercept\:y+\frac{1}{2}=-3(x+2)
|
critical points of f(x)=4x^3+6x^2+2x
|
critical\:points\:f(x)=4x^{3}+6x^{2}+2x
|
line (2,)(,3)
|
line\:(2,)(,3)
|
inverse of f(x)=sqrt(3-x^3)
|
inverse\:f(x)=\sqrt{3-x^{3}}
|
domain of y=3x^2+12
|
domain\:y=3x^{2}+12
|
range of \sqrt[3]{x-1}
|
range\:\sqrt[3]{x-1}
|
line (5,-4)(11,-4)
|
line\:(5,-4)(11,-4)
|
f(x)=x^2+3
|
f(x)=x^{2}+3
|
domain of f(x)=x+4,x<=-5
|
domain\:f(x)=x+4,x\le\:-5
|
domain of 2x^4+3x^3-6x^2-5x+6
|
domain\:2x^{4}+3x^{3}-6x^{2}-5x+6
|
inverse of f(x)= 1/2 x
|
inverse\:f(x)=\frac{1}{2}x
|
critical points of f(x)=(x-4)/(x^2+6)
|
critical\:points\:f(x)=\frac{x-4}{x^{2}+6}
|
range of 2+6/(sqrt(x))
|
range\:2+\frac{6}{\sqrt{x}}
|
monotone intervals f(x)=6-12x+6x^2-x^3
|
monotone\:intervals\:f(x)=6-12x+6x^{2}-x^{3}
|
inverse of f(x)=\sqrt[4]{x}
|
inverse\:f(x)=\sqrt[4]{x}
|
domain of g(x)=x+(10)/(8-x)
|
domain\:g(x)=x+\frac{10}{8-x}
|
midpoint (3,6)(11,13)
|
midpoint\:(3,6)(11,13)
|
inverse of f(x)=x^2-2x-24
|
inverse\:f(x)=x^{2}-2x-24
|
inverse of f(x)=7-x^2,x>= 0
|
inverse\:f(x)=7-x^{2},x\ge\:0
|
midpoint (10,1)(6,5)
|
midpoint\:(10,1)(6,5)
|
range of f(x)=(2/3)^x
|
range\:f(x)=(\frac{2}{3})^{x}
|
domain of f(x)=(sqrt(4+x))/(3-x)
|
domain\:f(x)=\frac{\sqrt{4+x}}{3-x}
|
critical points of r^2+8.12r+3364
|
critical\:points\:r^{2}+8.12r+3364
|
symmetry y=-x^2+2x-4
|
symmetry\:y=-x^{2}+2x-4
|
midpoint (2,0)(8,8)
|
midpoint\:(2,0)(8,8)
|
inverse of f(x)=(x-3)/(2x+1)
|
inverse\:f(x)=\frac{x-3}{2x+1}
|
domain of f(x)=(2x^2-x-3)/(x^2+1)
|
domain\:f(x)=\frac{2x^{2}-x-3}{x^{2}+1}
|
slope intercept of 3x+y=6
|
slope\:intercept\:3x+y=6
|
inverse of 2x^3+4
|
inverse\:2x^{3}+4
|
slope intercept of y-2=-x
|
slope\:intercept\:y-2=-x
|
parity f(x)=x+sin(x)
|
parity\:f(x)=x+\sin(x)
|
inverse of f(x)= 1/(-n-1)+2
|
inverse\:f(x)=\frac{1}{-n-1}+2
|
periodicity of f(x)=5cot(2x-(pi)/2)
|
periodicity\:f(x)=5\cot(2x-\frac{\pi}{2})
|
intercepts of y=-x^3+12x-16
|
intercepts\:y=-x^{3}+12x-16
|
inverse of f(x)=3x^2
|
inverse\:f(x)=3x^{2}
|
inverse of f(x)=(x+7)/(x-4)
|
inverse\:f(x)=\frac{x+7}{x-4}
|
inverse of f(x)=(x+3)/(4-x)
|
inverse\:f(x)=\frac{x+3}{4-x}
|
inverse of f(x)=(x-1)^3+2
|
inverse\:f(x)=(x-1)^{3}+2
|
critical points of 2x^2
|
critical\:points\:2x^{2}
|
slope of 3x+4y-2=0
|
slope\:3x+4y-2=0
|
inverse of y=-x
|
inverse\:y=-x
|
inverse of f(x)=3\sqrt[3]{x}+2
|
inverse\:f(x)=3\sqrt[3]{x}+2
|
inverse of log_{2}(4x)
|
inverse\:\log_{2}(4x)
|
inverse of (1+3x)/(5-2x)
|
inverse\:\frac{1+3x}{5-2x}
|
midpoint (2,-5)(8,3)
|
midpoint\:(2,-5)(8,3)
|
parity f(x)=(x+4x^3-5)/(5x^3-2x^2+2)
|
parity\:f(x)=\frac{x+4x^{3}-5}{5x^{3}-2x^{2}+2}
|
inverse of f(x)=8-x^2,x>= 0
|
inverse\:f(x)=8-x^{2},x\ge\:0
|
midpoint (-4,-2)(0.5,0)
|
midpoint\:(-4,-2)(0.5,0)
|
slope of f= 1/3 f(6)=6
|
slope\:f=\frac{1}{3}f(6)=6
|
slope intercept of x-4y=8
|
slope\:intercept\:x-4y=8
|
inverse of f(x)=sin^{-1}(x)
|
inverse\:f(x)=\sin^{-1}(x)
|
asymptotes of C(t)=(4x+4)/(5x+15)
|
asymptotes\:C(t)=\frac{4x+4}{5x+15}
|
domain of f(x)=x^3-2x^2-4x+8
|
domain\:f(x)=x^{3}-2x^{2}-4x+8
|
inflection points of f(x)= 6/(x^2+3)
|
inflection\:points\:f(x)=\frac{6}{x^{2}+3}
|
inflection points of f(x)=xe^{-x}
|
inflection\:points\:f(x)=xe^{-x}
|
periodicity of cos(2)(x-(pi)/2)
|
periodicity\:\cos(2)(x-\frac{\pi}{2})
|
inverse of f(x)=((x))/((sqrt(4-x^2)))
|
inverse\:f(x)=\frac{(x)}{(\sqrt{4-x^{2}})}
|
asymptotes of (x^2-2x-15)/x
|
asymptotes\:\frac{x^{2}-2x-15}{x}
|
critical points of x^3-3x+3
|
critical\:points\:x^{3}-3x+3
|
domain of sqrt(2x-2)
|
domain\:\sqrt{2x-2}
|
slope intercept of 2x-y=8
|
slope\:intercept\:2x-y=8
|
midpoint (-4,-2)(-2,-10)
|
midpoint\:(-4,-2)(-2,-10)
|
range of sqrt(-2x+3)
|
range\:\sqrt{-2x+3}
|
domain of f(x)= x/(1-x^2)+sqrt(5-x)
|
domain\:f(x)=\frac{x}{1-x^{2}}+\sqrt{5-x}
|
asymptotes of (3x+6)/(x^2-x-2)
|
asymptotes\:\frac{3x+6}{x^{2}-x-2}
|
domain of f(x)=\sqrt[3]{(x+3)}
|
domain\:f(x)=\sqrt[3]{(x+3)}
|