inverse of y=10^x
|
inverse\:y=10^{x}
|
symmetry x^2+6x+2
|
symmetry\:x^{2}+6x+2
|
domain of f(x)=(sqrt(x+6))/(x^2)
|
domain\:f(x)=\frac{\sqrt{x+6}}{x^{2}}
|
slope intercept of 6x+2y=12
|
slope\:intercept\:6x+2y=12
|
domain of (x^2+x)/(x^2)
|
domain\:\frac{x^{2}+x}{x^{2}}
|
symmetry y=x^2-5
|
symmetry\:y=x^{2}-5
|
domain of f(x)= 1/(x^3-x^2-6x)
|
domain\:f(x)=\frac{1}{x^{3}-x^{2}-6x}
|
symmetry x^2+3x-4
|
symmetry\:x^{2}+3x-4
|
domain of (7x)/(5+3x)
|
domain\:\frac{7x}{5+3x}
|
asymptotes of f(x)=tan^{-1}((x^2)/(x+5))
|
asymptotes\:f(x)=\tan^{-1}(\frac{x^{2}}{x+5})
|
domain of f(x)=sqrt(x/2)
|
domain\:f(x)=\sqrt{\frac{x}{2}}
|
slope intercept of 7x+5y=4
|
slope\:intercept\:7x+5y=4
|
symmetry 1/2 x^2-5x+6
|
symmetry\:\frac{1}{2}x^{2}-5x+6
|
domain of f(x)=2(1/2)^x
|
domain\:f(x)=2(\frac{1}{2})^{x}
|
domain of f(x)=sqrt(9-8x)
|
domain\:f(x)=\sqrt{9-8x}
|
line y=2x-4
|
line\:y=2x-4
|
domain of arcsin(x)
|
domain\:\arcsin(x)
|
inverse of f(x)=h(x)= 1/2 log_{3}(x)
|
inverse\:f(x)=h(x)=\frac{1}{2}\log_{3}(x)
|
asymptotes of (2x+3)/(x-1)
|
asymptotes\:\frac{2x+3}{x-1}
|
domain of f(x)=4x+1
|
domain\:f(x)=4x+1
|
inverse of f(x)=2^{x-3}
|
inverse\:f(x)=2^{x-3}
|
distance (4,1)(0,0)
|
distance\:(4,1)(0,0)
|
line (3,2)(4,-6)
|
line\:(3,2)(4,-6)
|
symmetry-2(x-2)^2+4
|
symmetry\:-2(x-2)^{2}+4
|
critical points of f(x)=x^2-4x+9
|
critical\:points\:f(x)=x^{2}-4x+9
|
slope intercept of y-4=-(x+7)
|
slope\:intercept\:y-4=-(x+7)
|
asymptotes of f(x)=(x-8)/6
|
asymptotes\:f(x)=\frac{x-8}{6}
|
domain of f(x)=-3x^2-24x+11
|
domain\:f(x)=-3x^{2}-24x+11
|
domain of f(x)=ln(x^2-3x-18)
|
domain\:f(x)=\ln(x^{2}-3x-18)
|
inverse of f(x)=4e^{5x+1}
|
inverse\:f(x)=4e^{5x+1}
|
extreme points of f(x)=2x+3\sqrt[3]{x^2}
|
extreme\:points\:f(x)=2x+3\sqrt[3]{x^{2}}
|
inverse of sqrt(x+5)
|
inverse\:\sqrt{x+5}
|
domain of f(x)= 1/(x+3)
|
domain\:f(x)=\frac{1}{x+3}
|
range of (8x+9)/(x+8)
|
range\:\frac{8x+9}{x+8}
|
critical points of 1/4 x^4-1/3 x^3-3x^2
|
critical\:points\:\frac{1}{4}x^{4}-\frac{1}{3}x^{3}-3x^{2}
|
extreme points of (2x)/(x^2-1)
|
extreme\:points\:\frac{2x}{x^{2}-1}
|
domain of 1/(1-sqrt(x+1))
|
domain\:\frac{1}{1-\sqrt{x+1}}
|
domain of f(x)=sqrt(2-4x)
|
domain\:f(x)=\sqrt{2-4x}
|
inverse of f(x)= x/4
|
inverse\:f(x)=\frac{x}{4}
|
line y=1
|
line\:y=1
|
critical points of f(x)=y=2x^5+5x^4-17
|
critical\:points\:f(x)=y=2x^{5}+5x^{4}-17
|
domain of f(x)=sqrt(x+3)-1
|
domain\:f(x)=\sqrt{x+3}-1
|
critical points of sqrt(1-x)
|
critical\:points\:\sqrt{1-x}
|
global extreme points of xe^x
|
global\:extreme\:points\:xe^{x}
|
extreme points of f(x)=xsqrt(1-x^2)-2
|
extreme\:points\:f(x)=x\sqrt{1-x^{2}}-2
|
parallel y-2= 1/3 (x-6)
|
parallel\:y-2=\frac{1}{3}(x-6)
|
inverse of f(x)=x^2+6,x>= 0
|
inverse\:f(x)=x^{2}+6,x\ge\:0
|
inverse of f(x)=9^{3x-4}-5
|
inverse\:f(x)=9^{3x-4}-5
|
inverse of f(x)=\sqrt[3]{7x}
|
inverse\:f(x)=\sqrt[3]{7x}
|
slope of x-5=4
|
slope\:x-5=4
|
domain of f(x)=x^3-4x
|
domain\:f(x)=x^{3}-4x
|
inverse of f(x)= 1/((x+4)^2)
|
inverse\:f(x)=\frac{1}{(x+4)^{2}}
|
extreme points of f(x)= 5/3 x^3-15/2 x^2
|
extreme\:points\:f(x)=\frac{5}{3}x^{3}-\frac{15}{2}x^{2}
|
critical points of x^4-2x^3
|
critical\:points\:x^{4}-2x^{3}
|
critical points of f(x)=x^{9/2}-3x^2
|
critical\:points\:f(x)=x^{\frac{9}{2}}-3x^{2}
|
domain of f(x)= 1/(1-\frac{1){(x-2)}}
|
domain\:f(x)=\frac{1}{1-\frac{1}{(x-2)}}
|
midpoint (-3,2)(-3,-2)
|
midpoint\:(-3,2)(-3,-2)
|
domain of f(x)= 1/(x^2(x+9))
|
domain\:f(x)=\frac{1}{x^{2}(x+9)}
|
inverse of ((x+2)^2)/(x-1)
|
inverse\:\frac{(x+2)^{2}}{x-1}
|
intercepts of f(x)=2x+3y-5=0
|
intercepts\:f(x)=2x+3y-5=0
|
asymptotes of f(x)=(3x)/(x-3)
|
asymptotes\:f(x)=\frac{3x}{x-3}
|
inverse of f(x)=(\sqrt[4]{x-5})/9
|
inverse\:f(x)=\frac{\sqrt[4]{x-5}}{9}
|
intercepts of f(x)=x^2-3
|
intercepts\:f(x)=x^{2}-3
|
domain of f(x)=sqrt(8+x)
|
domain\:f(x)=\sqrt{8+x}
|
range of f(x)=-sqrt(2-x)
|
range\:f(x)=-\sqrt{2-x}
|
parity tan(x)-x
|
parity\:\tan(x)-x
|
extreme points of f(x)=x^2+7x+6
|
extreme\:points\:f(x)=x^{2}+7x+6
|
extreme points of f(x)=2x^3-3x^2-12x+6
|
extreme\:points\:f(x)=2x^{3}-3x^{2}-12x+6
|
critical points of f(x)= x/(x^2+16)
|
critical\:points\:f(x)=\frac{x}{x^{2}+16}
|
domain of f(x)=sqrt((2+x)/(2-x))
|
domain\:f(x)=\sqrt{\frac{2+x}{2-x}}
|
global extreme points of 7x^2-9x-5
|
global\:extreme\:points\:7x^{2}-9x-5
|
domain of sin(2/x)
|
domain\:\sin(\frac{2}{x})
|
domain of x-6\div 8/x
|
domain\:x-6\div\:\frac{8}{x}
|
asymptotes of (3x-3)/(2x-2)
|
asymptotes\:\frac{3x-3}{2x-2}
|
inverse of f(x)=(3x-7)/(x+1)
|
inverse\:f(x)=\frac{3x-7}{x+1}
|
asymptotes of (x^4)/(x-1)
|
asymptotes\:\frac{x^{4}}{x-1}
|
parallel y=7.2(1.5,8.4)
|
parallel\:y=7.2(1.5,8.4)
|
midpoint (3,5)(2,7)
|
midpoint\:(3,5)(2,7)
|
asymptotes of f(x)= 1/6 (5-cos(2x))
|
asymptotes\:f(x)=\frac{1}{6}(5-\cos(2x))
|
distance (-5,8)(-3,-1)
|
distance\:(-5,8)(-3,-1)
|
perpendicular y=-5x+3,\at (-8,-6)
|
perpendicular\:y=-5x+3,\at\:(-8,-6)
|
intercepts of f(x)=(x+7)^2-11
|
intercepts\:f(x)=(x+7)^{2}-11
|
domain of (3-t)^{1/6}
|
domain\:(3-t)^{\frac{1}{6}}
|
domain of 7/(sqrt(x))
|
domain\:\frac{7}{\sqrt{x}}
|
intercepts of 2x^2
|
intercepts\:2x^{2}
|
parity e^{tan(5x)}sec^2(5x)dx
|
parity\:e^{\tan(5x)}\sec^{2}(5x)dx
|
domain of-x^4+x^3+9x
|
domain\:-x^{4}+x^{3}+9x
|
domain of f(x)=arcsin(2x)
|
domain\:f(x)=\arcsin(2x)
|
parity f(x)=x^5+x
|
parity\:f(x)=x^{5}+x
|
extreme points of f(x)= 1/3 x^3-2x^2+3x
|
extreme\:points\:f(x)=\frac{1}{3}x^{3}-2x^{2}+3x
|
line (1,1)(2,2)
|
line\:(1,1)(2,2)
|
domain of f(x)=y= 1/2 |x+4|
|
domain\:f(x)=y=\frac{1}{2}|x+4|
|
inverse of log_{3}(x+8)
|
inverse\:\log_{3}(x+8)
|
inverse of y=5^{(x-3)}-11
|
inverse\:y=5^{(x-3)}-11
|
line (2,12.5)(5,5)
|
line\:(2,12.5)(5,5)
|
inflection points of-x^4-9x^3+8x+5
|
inflection\:points\:-x^{4}-9x^{3}+8x+5
|
domain of sqrt(9-x^2)
|
domain\:\sqrt{9-x^{2}}
|
domain of y=(x-2)/(-2x+7)
|
domain\:y=\frac{x-2}{-2x+7}
|
domain of f(x)=cos(3x)
|
domain\:f(x)=\cos(3x)
|
line (0,-3)(5,0)
|
line\:(0,-3)(5,0)
|