extreme points of x^3-3/2 x^2
|
extreme\:points\:x^{3}-\frac{3}{2}x^{2}
|
inverse of f(x)=x^2-12
|
inverse\:f(x)=x^{2}-12
|
asymptotes of (-10x^2+13x+3)/(3x^2+7x-6)
|
asymptotes\:\frac{-10x^{2}+13x+3}{3x^{2}+7x-6}
|
domain of (x+4)/(x^2-9)
|
domain\:\frac{x+4}{x^{2}-9}
|
intercepts of f(x)=3x+y=6
|
intercepts\:f(x)=3x+y=6
|
asymptotes of (3x+1)/(x-2)
|
asymptotes\:\frac{3x+1}{x-2}
|
critical points of f(x)=5x^6-6x^5
|
critical\:points\:f(x)=5x^{6}-6x^{5}
|
critical points of f(x)=3x^2+2x+1
|
critical\:points\:f(x)=3x^{2}+2x+1
|
domain of \sqrt[3]{-8x-6}
|
domain\:\sqrt[3]{-8x-6}
|
inverse of f(x)=(x+2)^3-8
|
inverse\:f(x)=(x+2)^{3}-8
|
domain of f(x)=4-18t
|
domain\:f(x)=4-18t
|
perpendicular y=-5x+2,\at x=1
|
perpendicular\:y=-5x+2,\at\:x=1
|
asymptotes of f(x)=(7x^2-2x)/(15x+5)
|
asymptotes\:f(x)=\frac{7x^{2}-2x}{15x+5}
|
extreme points of f(x)=x^3+3x^2+3x+3
|
extreme\:points\:f(x)=x^{3}+3x^{2}+3x+3
|
domain of f(x)= x/(sqrt(x-6))
|
domain\:f(x)=\frac{x}{\sqrt{x-6}}
|
range of (x+4)/(x-5)
|
range\:\frac{x+4}{x-5}
|
inverse of f(x)=-6x-2
|
inverse\:f(x)=-6x-2
|
symmetry y=2x^2-12x+9
|
symmetry\:y=2x^{2}-12x+9
|
asymptotes of f(x)=(x^2-2x-8)/(x^2-6x+8)
|
asymptotes\:f(x)=\frac{x^{2}-2x-8}{x^{2}-6x+8}
|
inverse of f(x)=(x+3)^3-4
|
inverse\:f(x)=(x+3)^{3}-4
|
inflection points of f(x)=(e^x)/(4+e^x)
|
inflection\:points\:f(x)=\frac{e^{x}}{4+e^{x}}
|
perpendicular y=4x+6,\at (-8,-26)
|
perpendicular\:y=4x+6,\at\:(-8,-26)
|
perpendicular 9x-8y-16=0
|
perpendicular\:9x-8y-16=0
|
slope of y=6(7x+150)
|
slope\:y=6(7x+150)
|
slope of y=6x+1
|
slope\:y=6x+1
|
f(x)= x/(x^2+1)
|
f(x)=\frac{x}{x^{2}+1}
|
domain of sqrt(3-6/x)
|
domain\:\sqrt{3-\frac{6}{x}}
|
extreme points of f(x)=-0.1x^2+1.2x+98.6
|
extreme\:points\:f(x)=-0.1x^{2}+1.2x+98.6
|
line (5,7)(5,14)
|
line\:(5,7)(5,14)
|
domain of f(x)= 1/(\sqrt[4]{x^2-2x)}
|
domain\:f(x)=\frac{1}{\sqrt[4]{x^{2}-2x}}
|
domain of arctan(x)
|
domain\:\arctan(x)
|
intercepts of f(x)=x+3sqrt(x)-18
|
intercepts\:f(x)=x+3\sqrt{x}-18
|
domain of f(x)=x*e^{-x}
|
domain\:f(x)=x\cdot\:e^{-x}
|
asymptotes of ((2x^2-6x+4))/(x^2-5x+4)
|
asymptotes\:\frac{(2x^{2}-6x+4)}{x^{2}-5x+4}
|
intercepts of y=-e^{-x}+3-x^3+2x
|
intercepts\:y=-e^{-x}+3-x^{3}+2x
|
domain of f(x)=(sqrt(x))/(x+1)
|
domain\:f(x)=\frac{\sqrt{x}}{x+1}
|
inverse of sqrt((x-4)/5)
|
inverse\:\sqrt{\frac{x-4}{5}}
|
range of f(x)=sqrt(x/(x-1))
|
range\:f(x)=\sqrt{\frac{x}{x-1}}
|
intercepts of f(x)=(x^2+4x)/(x+4)
|
intercepts\:f(x)=\frac{x^{2}+4x}{x+4}
|
inflection points of f(x)=3x^5-5x^3
|
inflection\:points\:f(x)=3x^{5}-5x^{3}
|
parity f(x)=x^5+3x
|
parity\:f(x)=x^{5}+3x
|
inverse of f(x)=cos(9x)
|
inverse\:f(x)=\cos(9x)
|
range of-1/(x^4)-3
|
range\:-\frac{1}{x^{4}}-3
|
parity f(\alpha)=1+sec(\alpha)
|
parity\:f(\alpha)=1+\sec(\alpha)
|
domain of (x+3)^2(2x-12)^{1/4}
|
domain\:(x+3)^{2}(2x-12)^{\frac{1}{4}}
|
inverse of f(x)=4x-2
|
inverse\:f(x)=4x-2
|
domain of (5x+25)/x
|
domain\:\frac{5x+25}{x}
|
asymptotes of f(x)=(x^2-5)/(2x^2-18)
|
asymptotes\:f(x)=\frac{x^{2}-5}{2x^{2}-18}
|
parity f(x)=x+|x|
|
parity\:f(x)=x+|x|
|
symmetry x^3+1
|
symmetry\:x^{3}+1
|
range of 4^x
|
range\:4^{x}
|
monotone intervals f(x)=x^2+2x-8
|
monotone\:intervals\:f(x)=x^{2}+2x-8
|
line (-2,1),(1,-8)
|
line\:(-2,1),(1,-8)
|
inverse of f(x)=x^2-4x+10
|
inverse\:f(x)=x^{2}-4x+10
|
asymptotes of f(x)=(x^2-81)/(x-9)
|
asymptotes\:f(x)=\frac{x^{2}-81}{x-9}
|
parity f(x)=tan(x*2)-x
|
parity\:f(x)=\tan(x\cdot\:2)-x
|
inverse of f(x)=-0.2x-5
|
inverse\:f(x)=-0.2x-5
|
critical points of f(x)=4+1/3 x-1/2 x^2
|
critical\:points\:f(x)=4+\frac{1}{3}x-\frac{1}{2}x^{2}
|
f(x)=sqrt(x+2)
|
f(x)=\sqrt{x+2}
|
asymptotes of (x^2-16)/(x-4)
|
asymptotes\:\frac{x^{2}-16}{x-4}
|
inverse of f(x)= 2/(2x-3)
|
inverse\:f(x)=\frac{2}{2x-3}
|
range of f(x)=sqrt(x-7)
|
range\:f(x)=\sqrt{x-7}
|
asymptotes of f(x)=3tan(2x)
|
asymptotes\:f(x)=3\tan(2x)
|
extreme points of f(x)=x^3-3x+6
|
extreme\:points\:f(x)=x^{3}-3x+6
|
domain of f(x)=x^3+17x^2-80x+100
|
domain\:f(x)=x^{3}+17x^{2}-80x+100
|
domain of (sqrt(2x))/(5x-6)
|
domain\:\frac{\sqrt{2x}}{5x-6}
|
domain of f(x)=x^3+4
|
domain\:f(x)=x^{3}+4
|
domain of f(x)=sqrt(5-6x)
|
domain\:f(x)=\sqrt{5-6x}
|
slope intercept of y-(-4)=-2(x+1)
|
slope\:intercept\:y-(-4)=-2(x+1)
|
critical points of f(x)=-x^2-2x-2
|
critical\:points\:f(x)=-x^{2}-2x-2
|
domain of f(x)= x/(sqrt(x-1))
|
domain\:f(x)=\frac{x}{\sqrt{x-1}}
|
range of (x-1)/(3x^2-3)
|
range\:\frac{x-1}{3x^{2}-3}
|
parallel x+5y=-10
|
parallel\:x+5y=-10
|
domain of f(x)=sqrt(x-1)+2
|
domain\:f(x)=\sqrt{x-1}+2
|
slope of y=-3/2 x-5
|
slope\:y=-\frac{3}{2}x-5
|
range of f(x)= 1/(x-3)
|
range\:f(x)=\frac{1}{x-3}
|
domain of f(x)=12x-9
|
domain\:f(x)=12x-9
|
range of f(x)=log_{2}(x-3)-1
|
range\:f(x)=\log_{2}(x-3)-1
|
inflection points of f(x)=-x^4+3x^2-4
|
inflection\:points\:f(x)=-x^{4}+3x^{2}-4
|
domain of 1/(sqrt(x^4-37x^2+36))
|
domain\:\frac{1}{\sqrt{x^{4}-37x^{2}+36}}
|
midpoint (sqrt(50),4)(sqrt(2),-4)
|
midpoint\:(\sqrt{50},4)(\sqrt{2},-4)
|
inverse of f(x)=-5/8 x+10
|
inverse\:f(x)=-\frac{5}{8}x+10
|
inverse of f(x)=3x-4
|
inverse\:f(x)=3x-4
|
inverse of f(x)=1+sqrt(2+4x)
|
inverse\:f(x)=1+\sqrt{2+4x}
|
range of sqrt(x-1)+3
|
range\:\sqrt{x-1}+3
|
range of f(x)= 1/2 sqrt(x)
|
range\:f(x)=\frac{1}{2}\sqrt{x}
|
asymptotes of f(x)=((x+5))/((4x^2+9x-2))
|
asymptotes\:f(x)=\frac{(x+5)}{(4x^{2}+9x-2)}
|
inverse of f(x)=(3x-5)/4
|
inverse\:f(x)=\frac{3x-5}{4}
|
slope of 4x+y-1=0
|
slope\:4x+y-1=0
|
inverse of f(x)=(6x+4)/(x-1)
|
inverse\:f(x)=\frac{6x+4}{x-1}
|
inverse of f(x)= 1/(x-1)-3
|
inverse\:f(x)=\frac{1}{x-1}-3
|
inverse of f(x)=11x-4
|
inverse\:f(x)=11x-4
|
midpoint (1,3)(-3,4)
|
midpoint\:(1,3)(-3,4)
|
line (6,-9),(-2,-1)
|
line\:(6,-9),(-2,-1)
|
domain of 9(x)sqrt((x-5)/(x-7))
|
domain\:9(x)\sqrt{\frac{x-5}{x-7}}
|
intercepts of (-3x^2+24x-45)/(2x^2-10x)
|
intercepts\:\frac{-3x^{2}+24x-45}{2x^{2}-10x}
|
range of f(x)=-x^3+3x^2+10x
|
range\:f(x)=-x^{3}+3x^{2}+10x
|
intercepts of f(x)=(5x)/(x+6)
|
intercepts\:f(x)=\frac{5x}{x+6}
|
domain of f(x)= 4/(y^2-4y+4)
|
domain\:f(x)=\frac{4}{y^{2}-4y+4}
|
domain of f(x)=5x^2+9
|
domain\:f(x)=5x^{2}+9
|