extreme points of f(x)=x^3+4x^2
|
extreme\:points\:f(x)=x^{3}+4x^{2}
|
intercepts of (x^2+8)/(x^2-4)
|
intercepts\:\frac{x^{2}+8}{x^{2}-4}
|
asymptotes of f(x)= 8/(x^2-x-6)
|
asymptotes\:f(x)=\frac{8}{x^{2}-x-6}
|
inverse of ln(ln(x))
|
inverse\:\ln(\ln(x))
|
intercepts of f(x)= 5/((x-2)^4)
|
intercepts\:f(x)=\frac{5}{(x-2)^{4}}
|
asymptotes of f(x)=((3x+2))/(x+5)
|
asymptotes\:f(x)=\frac{(3x+2)}{x+5}
|
critical points of 1/(x^2-2x+9)
|
critical\:points\:\frac{1}{x^{2}-2x+9}
|
inverse of sqrt((x-5)/3)
|
inverse\:\sqrt{\frac{x-5}{3}}
|
domain of f(x)=(sqrt(x))/(4x^2+3x-1)
|
domain\:f(x)=\frac{\sqrt{x}}{4x^{2}+3x-1}
|
parity y= x/(x^2-4)
|
parity\:y=\frac{x}{x^{2}-4}
|
parallel y= 3/2 x+5
|
parallel\:y=\frac{3}{2}x+5
|
range of-2(e^x)-1
|
range\:-2(e^{x})-1
|
extreme points of f(x)=x^3-3x^2-9x+3
|
extreme\:points\:f(x)=x^{3}-3x^{2}-9x+3
|
range of f(x)= 1/(x^2+2)
|
range\:f(x)=\frac{1}{x^{2}+2}
|
inverse of f(x)= 6/(x+5)
|
inverse\:f(x)=\frac{6}{x+5}
|
inflection points of f(x)= x/(x+5)
|
inflection\:points\:f(x)=\frac{x}{x+5}
|
domain of f(x)= 4/(x+5)
|
domain\:f(x)=\frac{4}{x+5}
|
asymptotes of f(x)=(t-2)/(t^2+4)
|
asymptotes\:f(x)=\frac{t-2}{t^{2}+4}
|
range of f(x)=sin^{-1}(x-4)-(pi)/3
|
range\:f(x)=\sin^{-1}(x-4)-\frac{\pi}{3}
|
inverse of f(x)=\sqrt[3]{x+14}
|
inverse\:f(x)=\sqrt[3]{x+14}
|
domain of 2-sqrt(2-x)
|
domain\:2-\sqrt{2-x}
|
shift f(x)=-2sec(x/2)+3
|
shift\:f(x)=-2\sec(\frac{x}{2})+3
|
domain of f(x)=((x-2))/((x^2-4))
|
domain\:f(x)=\frac{(x-2)}{(x^{2}-4)}
|
domain of f(x)=log_{4}(x^2-9)
|
domain\:f(x)=\log_{4}(x^{2}-9)
|
intercepts of f(1,0)=y=2x^2+8x-10
|
intercepts\:f(1,0)=y=2x^{2}+8x-10
|
midpoint (-2,-4)(4,-4)
|
midpoint\:(-2,-4)(4,-4)
|
symmetry (x+1)^2-4
|
symmetry\:(x+1)^{2}-4
|
inverse of f(x)=pi-arccos(2x+1)
|
inverse\:f(x)=\pi-\arccos(2x+1)
|
inverse of f(x)=sqrt(3x-15)
|
inverse\:f(x)=\sqrt{3x-15}
|
distance (1,-1)(2,-6)
|
distance\:(1,-1)(2,-6)
|
vertex f(x)=y=x^2-2x-24
|
vertex\:f(x)=y=x^{2}-2x-24
|
range of f(x)=sqrt(x^2-6x+8)
|
range\:f(x)=\sqrt{x^{2}-6x+8}
|
domain of \sqrt[5]{x/5}
|
domain\:\sqrt[5]{\frac{x}{5}}
|
extreme points of f(x)=(x/(1+x^2))
|
extreme\:points\:f(x)=(\frac{x}{1+x^{2}})
|
domain of f(x)=ln(7-x)
|
domain\:f(x)=\ln(7-x)
|
inverse of 3/(x+5)
|
inverse\:\frac{3}{x+5}
|
extreme points of (2sin(x)+sin(2x))
|
extreme\:points\:(2\sin(x)+\sin(2x))
|
inflection points of 18x^{2/3}-6x
|
inflection\:points\:18x^{\frac{2}{3}}-6x
|
critical points of f(x)=(ln(x))/(x^7)
|
critical\:points\:f(x)=\frac{\ln(x)}{x^{7}}
|
intercepts of f(x)=(x^2-2x)/(2x^2-32)
|
intercepts\:f(x)=\frac{x^{2}-2x}{2x^{2}-32}
|
midpoint (4,-2)(2,-10)
|
midpoint\:(4,-2)(2,-10)
|
inverse of f(x)=sqrt(x+15)
|
inverse\:f(x)=\sqrt{x+15}
|
asymptotes of f(x)= 2/(x+5)
|
asymptotes\:f(x)=\frac{2}{x+5}
|
domain of f(x)=(x+2)/(x^2-3x-28)
|
domain\:f(x)=\frac{x+2}{x^{2}-3x-28}
|
domain of f(x)=-1/(2sqrt(2-x))
|
domain\:f(x)=-\frac{1}{2\sqrt{2-x}}
|
intercepts of f(x)=x^3-4x^2+x-4
|
intercepts\:f(x)=x^{3}-4x^{2}+x-4
|
range of e^{2x}
|
range\:e^{2x}
|
domain of f(x)=sqrt(((x^2-2x))/(x-1))
|
domain\:f(x)=\sqrt{\frac{(x^{2}-2x)}{x-1}}
|
slope intercept of 5x-2y=14
|
slope\:intercept\:5x-2y=14
|
slope of 6x-5y=3
|
slope\:6x-5y=3
|
domain of f(x)=arctan((x-1)/(x+1))
|
domain\:f(x)=\arctan(\frac{x-1}{x+1})
|
extreme points of f(x)=x^3-4x
|
extreme\:points\:f(x)=x^{3}-4x
|
inverse of f(x)=(-7x+9)/(-4x-3)
|
inverse\:f(x)=\frac{-7x+9}{-4x-3}
|
extreme points of f(x)=(x^2-9)/(x-5)
|
extreme\:points\:f(x)=\frac{x^{2}-9}{x-5}
|
slope intercept of y+3= 1/2 (x+10)
|
slope\:intercept\:y+3=\frac{1}{2}(x+10)
|
inverse of log_{1/3}(x)
|
inverse\:\log_{\frac{1}{3}}(x)
|
inverse of f(3)= 9/(3-10x)-3
|
inverse\:f(3)=\frac{9}{3-10x}-3
|
shift f(x)=9cos(1/4 pi x-pi)-2
|
shift\:f(x)=9\cos(\frac{1}{4}\pi\:x-\pi)-2
|
slope intercept of 8x+10y=-60
|
slope\:intercept\:8x+10y=-60
|
domain of f(x)=6x-8
|
domain\:f(x)=6x-8
|
inverse of f(x)=4x^2+8x+13
|
inverse\:f(x)=4x^{2}+8x+13
|
inverse of f(x)=sqrt(5x-6)
|
inverse\:f(x)=\sqrt{5x-6}
|
frequency sin(3x)
|
frequency\:\sin(3x)
|
inverse of f(4)=
|
inverse\:f(4)=
|
inverse of f(x)=-x^3+2
|
inverse\:f(x)=-x^{3}+2
|
inflection points of x^3-15/2 x^2-18x-1
|
inflection\:points\:x^{3}-\frac{15}{2}x^{2}-18x-1
|
inverse of f(x)=(x-5)^2x>= 5
|
inverse\:f(x)=(x-5)^{2}x\ge\:5
|
domain of 4x^2+3x+9
|
domain\:4x^{2}+3x+9
|
inverse of f(x)=3x^3-4
|
inverse\:f(x)=3x^{3}-4
|
domain of f(x)= 3/x+2
|
domain\:f(x)=\frac{3}{x}+2
|
slope of 2.8\div 8.2
|
slope\:2.8\div\:8.2
|
domain of f(x)=(x^3+27)/(x+3)
|
domain\:f(x)=\frac{x^{3}+27}{x+3}
|
midpoint (4,-3)(7,7)
|
midpoint\:(4,-3)(7,7)
|
inverse of f(x)=(x+4)/(x-1)
|
inverse\:f(x)=\frac{x+4}{x-1}
|
extreme points of f(x)=sin(9x)
|
extreme\:points\:f(x)=\sin(9x)
|
critical points of f(x)=x^4+4/x
|
critical\:points\:f(x)=x^{4}+\frac{4}{x}
|
domain of y=sqrt(x+4)-2
|
domain\:y=\sqrt{x+4}-2
|
domain of 3^{x-2}
|
domain\:3^{x-2}
|
inverse of f(x)=1-e^{-2x}
|
inverse\:f(x)=1-e^{-2x}
|
inverse of f(x)=-5x-9
|
inverse\:f(x)=-5x-9
|
slope intercept of x+2y=2
|
slope\:intercept\:x+2y=2
|
symmetry h(x)=(-x^3)/(3x^2-9)
|
symmetry\:h(x)=\frac{-x^{3}}{3x^{2}-9}
|
domain of f(x)=(-(16)/((3+t)^2))
|
domain\:f(x)=(-\frac{16}{(3+t)^{2}})
|
asymptotes of ((-x^2+7x-12))/(5x-15)
|
asymptotes\:\frac{(-x^{2}+7x-12)}{5x-15}
|
inverse of f(x)=6-9x
|
inverse\:f(x)=6-9x
|
intercepts of 6sin(x)
|
intercepts\:6\sin(x)
|
inverse of f(x)=-2/(x+1)-2
|
inverse\:f(x)=-\frac{2}{x+1}-2
|
extreme points of f(x)=x^{1/5}
|
extreme\:points\:f(x)=x^{\frac{1}{5}}
|
distance (4,-3)(-1,1)
|
distance\:(4,-3)(-1,1)
|
domain of f(x)=49x^2+133x+90
|
domain\:f(x)=49x^{2}+133x+90
|
domain of log_{10}(sqrt(x+2))
|
domain\:\log_{10}(\sqrt{x+2})
|
monotone intervals x^2-7x
|
monotone\:intervals\:x^{2}-7x
|
symmetry x=-y^2+9
|
symmetry\:x=-y^{2}+9
|
critical points of (x-2)/(x^2+5x+4)
|
critical\:points\:\frac{x-2}{x^{2}+5x+4}
|
intercepts of f(x)=3x-3y=-3
|
intercepts\:f(x)=3x-3y=-3
|
extreme points of f(x)=-x^2+6x+8
|
extreme\:points\:f(x)=-x^{2}+6x+8
|
asymptotes of f(x)=(x^2+1)/(x^3+2)
|
asymptotes\:f(x)=\frac{x^{2}+1}{x^{3}+2}
|
domain of f(x)=\sqrt[3]{3-x}
|
domain\:f(x)=\sqrt[3]{3-x}
|
periodicity of f(x)=-2cos(3x)
|
periodicity\:f(x)=-2\cos(3x)
|
extreme points of f(x)=x^4-32
|
extreme\:points\:f(x)=x^{4}-32
|