extreme f(x)=4x-x^2[1.5]
|
extreme\:f(x)=4x-x^{2}[1.5]
|
inverse of f(x)= 1/(sqrt(x^2+1))
|
inverse\:f(x)=\frac{1}{\sqrt{x^{2}+1}}
|
extreme f(x)=9xye^{-x^2-y^2}
|
extreme\:f(x)=9xye^{-x^{2}-y^{2}}
|
extreme f(x)=x^3-12x-1
|
extreme\:f(x)=x^{3}-12x-1
|
f(x,y)=9-x^2-9y^2
|
f(x,y)=9-x^{2}-9y^{2}
|
extreme 6sin(x)
|
extreme\:6\sin(x)
|
minimum 2t^3-24t^2+70
|
minimum\:2t^{3}-24t^{2}+70
|
extreme y=x^2e^x-2
|
extreme\:y=x^{2}e^{x}-2
|
minimum (15,)/(,1,4)
|
minimum\:\frac{15,}{,1,4}
|
f(x,y)=x^2+y^2+2x+2y
|
f(x,y)=x^{2}+y^{2}+2x+2y
|
extreme 7x-0.005x^2-3.6x-70
|
extreme\:7x-0.005x^{2}-3.6x-70
|
extreme+sqrt(x^2-2x-8)
|
extreme\:+\sqrt{x^{2}-2x-8}
|
domain of h(x)= 4/(x-5)
|
domain\:h(x)=\frac{4}{x-5}
|
f(x)=7xy-λ(6x+11y-2)
|
f(x)=7xy-λ(6x+11y-2)
|
extreme (x+3)/(x^2-4x-21)
|
extreme\:\frac{x+3}{x^{2}-4x-21}
|
extreme \sqrt[4]{24-8x}
|
extreme\:\sqrt[4]{24-8x}
|
extreme f(x)=x-sin(2pi)
|
extreme\:f(x)=x-\sin(2π)
|
minimum x^2-20x+150
|
minimum\:x^{2}-20x+150
|
minimum f(x)=2+7/x+7/(x^2)
|
minimum\:f(x)=2+\frac{7}{x}+\frac{7}{x^{2}}
|
minimum f(x)=ln(x+5)-1
|
minimum\:f(x)=\ln(x+5)-1
|
extreme f(x)=x^{20}+4x^{10}+8
|
extreme\:f(x)=x^{20}+4x^{10}+8
|
parallel y=4x+2,\at (-8,5)
|
parallel\:y=4x+2,\at\:(-8,5)
|
extreme f(x,y)=5x+2y
|
extreme\:f(x,y)=5x+2y
|
extreme f(x)=0.4x^2-192x+33821
|
extreme\:f(x)=0.4x^{2}-192x+33821
|
extreme y=9x^4-4x^3,(-3,3)
|
extreme\:y=9x^{4}-4x^{3},(-3,3)
|
extreme f(x)=(x^2)/(x^2-108)
|
extreme\:f(x)=\frac{x^{2}}{x^{2}-108}
|
extreme y=2x^2-64sqrt(x)
|
extreme\:y=2x^{2}-64\sqrt{x}
|
extreme f(x)= 1/4 x^4-x^3-2x^2
|
extreme\:f(x)=\frac{1}{4}x^{4}-x^{3}-2x^{2}
|
f(x)=3x-2y
|
f(x)=3x-2y
|
extreme f(x)=-(12)/(x^4)+(14)/(x^3)
|
extreme\:f(x)=-\frac{12}{x^{4}}+\frac{14}{x^{3}}
|
extreme f(x)=(x^3)/3-x^2-3x-1,-6<= x<= 4
|
extreme\:f(x)=\frac{x^{3}}{3}-x^{2}-3x-1,-6\le\:x\le\:4
|
critical points of sin^2(16x)
|
critical\:points\:\sin^{2}(16x)
|
extreme f(x)=x^2+(x^3)/3-(x/4)^4
|
extreme\:f(x)=x^{2}+\frac{x^{3}}{3}-(\frac{x}{4})^{4}
|
extreme f(x)=xe^{-7x},0<= x<= 2
|
extreme\:f(x)=xe^{-7x},0\le\:x\le\:2
|
f(t)=2+3o(t)
|
f(t)=2+3o(t)
|
extreme f(x)=x^3-9x+15x+3
|
extreme\:f(x)=x^{3}-9x+15x+3
|
extreme (x^2-5x)(y^2-8y)
|
extreme\:(x^{2}-5x)(y^{2}-8y)
|
T(x,y)=10-2x^2-3y^2
|
T(x,y)=10-2x^{2}-3y^{2}
|
extreme f(x)=e^{4x^2+2y^2-32x}
|
extreme\:f(x)=e^{4x^{2}+2y^{2}-32x}
|
extreme f(x,y)=xy(8+x)(y-9)
|
extreme\:f(x,y)=xy(8+x)(y-9)
|
minimum 3/2 x^2+xy+1/108 y^4
|
minimum\:\frac{3}{2}x^{2}+xy+\frac{1}{108}y^{4}
|
extreme (3x-4)^2
|
extreme\:(3x-4)^{2}
|
line (-1/2 ,0)(0, 1/4)
|
line\:(-\frac{1}{2},0)(0,\frac{1}{4})
|
inflection points of (x^2-2x-2)/(x-3)
|
inflection\:points\:\frac{x^{2}-2x-2}{x-3}
|
extreme (x^3)/(x^2+4)
|
extreme\:\frac{x^{3}}{x^{2}+4}
|
extreme f(x)=2x^3+3x^2-36x-20
|
extreme\:f(x)=2x^{3}+3x^{2}-36x-20
|
extreme x^3+3x^2y+y^3-y
|
extreme\:x^{3}+3x^{2}y+y^{3}-y
|
extreme f(x,y)=-8xy-5x^2-6y^2+38x+36y+7
|
extreme\:f(x,y)=-8xy-5x^{2}-6y^{2}+38x+36y+7
|
extreme f(x,y)=x^2+2y^2-8x+8y
|
extreme\:f(x,y)=x^{2}+2y^{2}-8x+8y
|
extreme f(x)=2+4x-x^4
|
extreme\:f(x)=2+4x-x^{4}
|
extreme f(x,y)=5x+6y
|
extreme\:f(x,y)=5x+6y
|
extreme x^2+6xy+2y^2
|
extreme\:x^{2}+6xy+2y^{2}
|
slope of 2x+5y=8
|
slope\:2x+5y=8
|
extreme+(x+1/x+8)/(x+1/x+2)
|
extreme\:+\frac{x+\frac{1}{x}+8}{x+\frac{1}{x}+2}
|
f(x,y)=6(1-x^{(2)})*(1-y^{(2)})
|
f(x,y)=6(1-x^{(2)})\cdot\:(1-y^{(2)})
|
extreme f(x)=-2x^2ln(x)+17x^2
|
extreme\:f(x)=-2x^{2}\ln(x)+17x^{2}
|
extreme |x+4|
|
extreme\:\left|x+4\right|
|
extreme f(x)=(2x^2+3)/(x^2-1)
|
extreme\:f(x)=\frac{2x^{2}+3}{x^{2}-1}
|
extreme f(x)=4x+8cos(x)
|
extreme\:f(x)=4x+8\cos(x)
|
extreme f(y)=x^2+y^2-20x+16y-9
|
extreme\:f(y)=x^{2}+y^{2}-20x+16y-9
|
f(x,y)=x^4+y^4+4xy
|
f(x,y)=x^{4}+y^{4}+4xy
|
extreme 9/2 x^2-ln(x)
|
extreme\:\frac{9}{2}x^{2}-\ln(x)
|
f(x)=2x-0.3y
|
f(x)=2x-0.3y
|
range of f(x)=140*1.6^x
|
range\:f(x)=140\cdot\:1.6^{x}
|
extreme f(x)=1-(x-2)^{4/5}
|
extreme\:f(x)=1-(x-2)^{\frac{4}{5}}
|
f(x,y)=(x^3-y^3)/(x-y)
|
f(x,y)=\frac{x^{3}-y^{3}}{x-y}
|
extreme f(x)=x^4-98x^2-1,(-8,8)
|
extreme\:f(x)=x^{4}-98x^{2}-1,(-8,8)
|
extreme f(x,y)=(x-1)^2+(y-4)^2
|
extreme\:f(x,y)=(x-1)^{2}+(y-4)^{2}
|
extreme 5x+(100)/x
|
extreme\:5x+\frac{100}{x}
|
extreme f(x)=3x^3-9x^2-315x+7
|
extreme\:f(x)=3x^{3}-9x^{2}-315x+7
|
extreme f(x)=(2x^2)/(x-2),(-2,1)
|
extreme\:f(x)=\frac{2x^{2}}{x-2},(-2,1)
|
extreme f(x)=250(0.9)^x,0<= x<= 6
|
extreme\:f(x)=250(0.9)^{x},0\le\:x\le\:6
|
extreme yln(x)+xy^2
|
extreme\:y\ln(x)+xy^{2}
|
extreme 2x^3-9x^2+12x-8
|
extreme\:2x^{3}-9x^{2}+12x-8
|
y=cos(2x)
|
y=\cos(2x)
|
extreme f(x)=4x^2-xy+2y^2
|
extreme\:f(x)=4x^{2}-xy+2y^{2}
|
f(x)=(-3x+y-4)/(4x^2-3y+2)
|
f(x)=\frac{-3x+y-4}{4x^{2}-3y+2}
|
extreme f(x)=2x+5x^{-1}
|
extreme\:f(x)=2x+5x^{-1}
|
minimum a-(ab)/((a+b))
|
minimum\:a-\frac{ab}{(a+b)}
|
extreme f(x)=(x-2)(x-3)^{1/2}
|
extreme\:f(x)=(x-2)(x-3)^{\frac{1}{2}}
|
extreme f(x)=x^2+9,-1<= x<= 4
|
extreme\:f(x)=x^{2}+9,-1\le\:x\le\:4
|
extreme f(x)=x(20-2x)(16-x),0<x<10
|
extreme\:f(x)=x(20-2x)(16-x),0<x<10
|
extreme f(x)= 5/(x^2+1)-1
|
extreme\:f(x)=\frac{5}{x^{2}+1}-1
|
extreme f(x,y)=x^2+y^2-20x+4y-10
|
extreme\:f(x,y)=x^{2}+y^{2}-20x+4y-10
|
slope intercept of-4x+2y=20
|
slope\:intercept\:-4x+2y=20
|
extreme 2x^3+6x^2-90x+7,-5<= x<= 6
|
extreme\:2x^{3}+6x^{2}-90x+7,-5\le\:x\le\:6
|
extreme f(x)=-5/4 x^2+5/2 x+7/4
|
extreme\:f(x)=-\frac{5}{4}x^{2}+\frac{5}{2}x+\frac{7}{4}
|
extreme f(x,y)=x+y-3/2 (x^2+y^2+1)
|
extreme\:f(x,y)=x+y-\frac{3}{2}(x^{2}+y^{2}+1)
|
extreme f(x)=e^{2x}+e^{(-x)}
|
extreme\:f(x)=e^{2x}+e^{(-x)}
|
extreme-x^2+8x-9
|
extreme\:-x^{2}+8x-9
|
extreme f(x)=x^3-12x^2-27x+2,1<= x<= 10
|
extreme\:f(x)=x^{3}-12x^{2}-27x+2,1\le\:x\le\:10
|
minimum 85y^{35}
|
minimum\:85y^{35}
|
extreme 2x^3+9x^2-24x
|
extreme\:2x^{3}+9x^{2}-24x
|
extreme f(x)=x^3-x^2-x-4
|
extreme\:f(x)=x^{3}-x^{2}-x-4
|
extreme f(x)=x^3-x^2-x-5
|
extreme\:f(x)=x^{3}-x^{2}-x-5
|
inverse of f(x)=4x^2-3
|
inverse\:f(x)=4x^{2}-3
|
extreme f(x,y)=3x^2+3y-y^3
|
extreme\:f(x,y)=3x^{2}+3y-y^{3}
|
extreme f(x)=12-3x^2,(-2,5)
|
extreme\:f(x)=12-3x^{2},(-2,5)
|
extreme f(x)=x^3-x^2-x-1
|
extreme\:f(x)=x^{3}-x^{2}-x-1
|
extreme f(x)=4xy+120y-20y^2-1/10 x^2y-80
|
extreme\:f(x)=4xy+120y-20y^{2}-\frac{1}{10}x^{2}y-80
|