f(x,y)=x3y2
|
f(x,y)=x3y2
|
extreme y=(x^3)/3-x^2-3x
|
extreme\:y=\frac{x^{3}}{3}-x^{2}-3x
|
extreme f(x)=9x^2+2,1<= x<=-2
|
extreme\:f(x)=9x^{2}+2,1\le\:x\le\:-2
|
extreme f(x)=5+x+x^2
|
extreme\:f(x)=5+x+x^{2}
|
extreme y=x^2+(16)/x
|
extreme\:y=x^{2}+\frac{16}{x}
|
asymptotes of f(x)= 3/(x-2)
|
asymptotes\:f(x)=\frac{3}{x-2}
|
extreme f(x)=2x^3-3x^2-252x
|
extreme\:f(x)=2x^{3}-3x^{2}-252x
|
minimum y=2x^3+ax^2-12x-4,x=1
|
minimum\:y=2x^{3}+ax^{2}-12x-4,x=1
|
extreme 4ap+50p-9p^2-1/10 a^2p-110
|
extreme\:4ap+50p-9p^{2}-\frac{1}{10}a^{2}p-110
|
extreme 2x^3+5x^2+5y^3-5y^2+10
|
extreme\:2x^{3}+5x^{2}+5y^{3}-5y^{2}+10
|
extreme f(x,y)=x^3+3x^2+6xy+y^2
|
extreme\:f(x,y)=x^{3}+3x^{2}+6xy+y^{2}
|
minimum f(x)=cos(pix),0<= x<= 1/6
|
minimum\:f(x)=\cos(πx),0\le\:x\le\:\frac{1}{6}
|
extreme ((2x+1))/((e^{x^2))}
|
extreme\:\frac{(2x+1)}{(e^{x^{2}})}
|
f(y)=3y^2-3x^2-6y
|
f(y)=3y^{2}-3x^{2}-6y
|
f(x,y)=x^3y+12yx^2-8y
|
f(x,y)=x^{3}y+12yx^{2}-8y
|
extreme f(x,y)=2e^{-y}(x^2+y^2)+5
|
extreme\:f(x,y)=2e^{-y}(x^{2}+y^{2})+5
|
monotone intervals f(x)=3e^{x^2-4x}
|
monotone\:intervals\:f(x)=3e^{x^{2}-4x}
|
extreme f(x)=(sqrt(5-x^2))/x
|
extreme\:f(x)=\frac{\sqrt{5-x^{2}}}{x}
|
extreme x^2-14x+2
|
extreme\:x^{2}-14x+2
|
extreme f(x)=ln(2x-x^2)
|
extreme\:f(x)=\ln(2x-x^{2})
|
extreme y=2x^2-5x+4-10
|
extreme\:y=2x^{2}-5x+4-10
|
extreme x^4-4x^3-18x^2-20x-12
|
extreme\:x^{4}-4x^{3}-18x^{2}-20x-12
|
extreme-0.015x^2+1.24x-7.4
|
extreme\:-0.015x^{2}+1.24x-7.4
|
extreme f(x,y)=-3y^2+18y-x^2
|
extreme\:f(x,y)=-3y^{2}+18y-x^{2}
|
f(x,y)=yln(2x+y)
|
f(x,y)=y\ln(2x+y)
|
f(x,y)=5x^2+5x-2y+4y^2
|
f(x,y)=5x^{2}+5x-2y+4y^{2}
|
f(x,y)=x^2+y^2-10x+16y-6
|
f(x,y)=x^{2}+y^{2}-10x+16y-6
|
domain of f(x)=2+sqrt(x-1)
|
domain\:f(x)=2+\sqrt{x-1}
|
extreme f(x)=e^{-((x-3)^2)/2}(-x+3)
|
extreme\:f(x)=e^{-\frac{(x-3)^{2}}{2}}(-x+3)
|
extreme (8x^3)/3+6x^2-8x,-3<= x<= 1
|
extreme\:\frac{8x^{3}}{3}+6x^{2}-8x,-3\le\:x\le\:1
|
extreme f(x)=(x^4)/4-(x/3)^3-x^2+1
|
extreme\:f(x)=\frac{x^{4}}{4}-(\frac{x}{3})^{3}-x^{2}+1
|
extreme f(x)=cos(x)-9x,0<= x<= 4pi
|
extreme\:f(x)=\cos(x)-9x,0\le\:x\le\:4π
|
extreme f(x,y)=3x^2-3y^2+8
|
extreme\:f(x,y)=3x^{2}-3y^{2}+8
|
extreme y=xe^{-(x^2)/(18)}
|
extreme\:y=xe^{-\frac{x^{2}}{18}}
|
extreme f(x)=(8-9x)/(\sqrt[3]{x+3)}
|
extreme\:f(x)=\frac{8-9x}{\sqrt[3]{x+3}}
|
extreme f(x,y)=2x^3+2xy^2-4x+5
|
extreme\:f(x,y)=2x^{3}+2xy^{2}-4x+5
|
extreme f(x)=(40)/r+4pir^2
|
extreme\:f(x)=\frac{40}{r}+4πr^{2}
|
extreme f(x)=x*sqrt(x+2)
|
extreme\:f(x)=x\cdot\:\sqrt{x+2}
|
domain of x/(x^2+1)
|
domain\:\frac{x}{x^{2}+1}
|
extreme f^0
|
extreme\:f^{0}
|
extreme f(x,y)=13-4x+8y
|
extreme\:f(x,y)=13-4x+8y
|
extreme g(x)=x+4/(x^2)
|
extreme\:g(x)=x+\frac{4}{x^{2}}
|
extreme f(1,y)=y^2+y+6
|
extreme\:f(1,y)=y^{2}+y+6
|
extreme f(x)=-10x^2+60x-80
|
extreme\:f(x)=-10x^{2}+60x-80
|
extreme f(x)=-5/(x-2)
|
extreme\:f(x)=-\frac{5}{x-2}
|
extreme f(x)=4x^2-4x+1,-3<= x<= 1
|
extreme\:f(x)=4x^{2}-4x+1,-3\le\:x\le\:1
|
extreme f(x)=(x^2-9)^{1/3}
|
extreme\:f(x)=(x^{2}-9)^{\frac{1}{3}}
|
extreme f(x)=x^4-8x^3+20
|
extreme\:f(x)=x^{4}-8x^{3}+20
|
extreme f(x)=3+x+9/x ,(0,infinity)
|
extreme\:f(x)=3+x+\frac{9}{x},(0,\infty\:)
|
critical points of f(x)=12x-3x^2
|
critical\:points\:f(x)=12x-3x^{2}
|
parity f(x)=|x-3|
|
parity\:f(x)=|x-3|
|
extreme f(x)=x^{2/9}(7x+11)
|
extreme\:f(x)=x^{\frac{2}{9}}(7x+11)
|
extreme 3x+(75)/x
|
extreme\:3x+\frac{75}{x}
|
extreme x^2-y^2-6x+6y+2
|
extreme\:x^{2}-y^{2}-6x+6y+2
|
extreme (2x^2-8)/(-x^2-2x+3)
|
extreme\:\frac{2x^{2}-8}{-x^{2}-2x+3}
|
extreme f(x)=6sqrt(x)-1/(7sqrt(x))
|
extreme\:f(x)=6\sqrt{x}-\frac{1}{7\sqrt{x}}
|
extreme f(x)=x-3ln(x^2+5)
|
extreme\:f(x)=x-3\ln(x^{2}+5)
|
extreme f(x)=-27xy+x^3+y^3
|
extreme\:f(x)=-27xy+x^{3}+y^{3}
|
extreme 2x^3-3x^2-12x+13
|
extreme\:2x^{3}-3x^{2}-12x+13
|
minimum y=-11sin(22x+33)+44
|
minimum\:y=-11\sin(22x+33)+44
|
line (-6,0),(0,-1)
|
line\:(-6,0),(0,-1)
|
f(t)=2e^{ln(x)}(t)
|
f(t)=2e^{\ln(x)}(t)
|
extreme f(x)=(2(x+6)^2)/(x+8)
|
extreme\:f(x)=\frac{2(x+6)^{2}}{x+8}
|
extreme f(x)=(x^3+x-2)/(x^2-4x+3)
|
extreme\:f(x)=\frac{x^{3}+x-2}{x^{2}-4x+3}
|
extreme (5x-15)/(2x-9)
|
extreme\:\frac{5x-15}{2x-9}
|
extreme f(x,y)=12xy-x^2-3y^2
|
extreme\:f(x,y)=12xy-x^{2}-3y^{2}
|
extreme f(x)=x^3-12x^2+36x-3,0<= x<= 9
|
extreme\:f(x)=x^{3}-12x^{2}+36x-3,0\le\:x\le\:9
|
extreme f(x)=4x^2-x+3
|
extreme\:f(x)=4x^{2}-x+3
|
extreme f(x)=2x^3-21x^2+72x-8
|
extreme\:f(x)=2x^{3}-21x^{2}+72x-8
|
extreme 1/(x^2+x+1)
|
extreme\:\frac{1}{x^{2}+x+1}
|
domain of-3(a-1)
|
domain\:-3(a-1)
|
extreme f(x)=e^{14x}+e^{-x}
|
extreme\:f(x)=e^{14x}+e^{-x}
|
extreme f(x)=x^3-9x^2-21x+7
|
extreme\:f(x)=x^{3}-9x^{2}-21x+7
|
extreme f(x)=x^3-9x^2-21x+9
|
extreme\:f(x)=x^{3}-9x^{2}-21x+9
|
extreme f(x)=4x^2-x-5
|
extreme\:f(x)=4x^{2}-x-5
|
extreme f(x,y)=x^2+14xy+y^2
|
extreme\:f(x,y)=x^{2}+14xy+y^{2}
|
extreme f(x)=(27x^2)/((1-x)^3)
|
extreme\:f(x)=\frac{27x^{2}}{(1-x)^{3}}
|
extreme f(x)=345x^2-3450x^3,0<= x<= 0.1
|
extreme\:f(x)=345x^{2}-3450x^{3},0\le\:x\le\:0.1
|
extreme 1/3 x^3-1/2 x^2+1
|
extreme\:\frac{1}{3}x^{3}-\frac{1}{2}x^{2}+1
|
extreme f(x,y)=x^2y+2y^2-2xy
|
extreme\:f(x,y)=x^{2}y+2y^{2}-2xy
|
extreme f(x,y)=x^3+y^2-4xy+17x-10y+2021
|
extreme\:f(x,y)=x^{3}+y^{2}-4xy+17x-10y+2021
|
inverse of f(x)=\sqrt[3]{(y+4)^2}
|
inverse\:f(x)=\sqrt[3]{(y+4)^{2}}
|
extreme f(x)=(x-3)(x-2)^2
|
extreme\:f(x)=(x-3)(x-2)^{2}
|
extreme y=7x+7sin(x)
|
extreme\:y=7x+7\sin(x)
|
extreme f(x)=4x^2+3x^2-6x+1
|
extreme\:f(x)=4x^{2}+3x^{2}-6x+1
|
extreme (4x+13)/(-2x-6)
|
extreme\:\frac{4x+13}{-2x-6}
|
extreme y=x^4-12x^3+48x^2-64x
|
extreme\:y=x^{4}-12x^{3}+48x^{2}-64x
|
extreme f(x,y)=x^2+xy+2x+5y-1
|
extreme\:f(x,y)=x^{2}+xy+2x+5y-1
|
extreme 0.01x^3-0.45x^2+2x+300
|
extreme\:0.01x^{3}-0.45x^{2}+2x+300
|
extreme (xe^{2/x})
|
extreme\:(xe^{\frac{2}{x}})
|
extreme 50000x+40000y-10x^2-20y^2-10xy
|
extreme\:50000x+40000y-10x^{2}-20y^{2}-10xy
|
slope of 4x+2y=6
|
slope\:4x+2y=6
|
extreme f(x)= 1/2 x^2-9x+7
|
extreme\:f(x)=\frac{1}{2}x^{2}-9x+7
|
extreme f(x)=-3x^2+10x-3
|
extreme\:f(x)=-3x^{2}+10x-3
|
extreme f(x)=10-8x^2
|
extreme\:f(x)=10-8x^{2}
|
minimum f(x)=3x^2
|
minimum\:f(x)=3x^{2}
|
extreme f(x)=2x-(800)/(x^2)
|
extreme\:f(x)=2x-\frac{800}{x^{2}}
|
extreme f(x)=|-4x-5|,-5<x<1
|
extreme\:f(x)=\left|-4x-5\right|,-5<x<1
|
f(x,y)=3x^6y-5xy^2
|
f(x,y)=3x^{6}y-5xy^{2}
|
extreme f(x)=x^3e^{-4x},0<= x<= 2
|
extreme\:f(x)=x^{3}e^{-4x},0\le\:x\le\:2
|