Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=(3x-5)/(2x-8)
inverse\:f(x)=\frac{3x-5}{2x-8}
inflection f(x)=2x^3-3x^2-12x
inflection\:f(x)=2x^{3}-3x^{2}-12x
inverse of f(x)=x^{24}
inverse\:f(x)=x^{24}
extreme (540)/(sqrt(37))
extreme\:\frac{540}{\sqrt{37}}
domain of sqrt(16-x^2)+sqrt(x+2)
domain\:\sqrt{16-x^{2}}+\sqrt{x+2}
critical f(x)=2x^3+3x^2-72x
critical\:f(x)=2x^{3}+3x^{2}-72x
intercepts of 2x^3+13x^2+17x-12
intercepts\:2x^{3}+13x^{2}+17x-12
distance (4,4),(-2,7)
distance\:(4,4),(-2,7)
domain of g(x)=\sqrt[4]{x}
domain\:g(x)=\sqrt[4]{x}
intercepts of f(x)=x^2+y^2=9
intercepts\:f(x)=x^{2}+y^{2}=9
domain of f(x)=(x+6)/(x-2)
domain\:f(x)=\frac{x+6}{x-2}
domain of f(x)=sqrt(3x-5)
domain\:f(x)=\sqrt{3x-5}
inverse of f(x)=10sqrt(x-8)+2
inverse\:f(x)=10\sqrt{x-8}+2
range of |x^2-4|
range\:\left|x^{2}-4\right|
inverse of h(x)= 4/(x-1)
inverse\:h(x)=\frac{4}{x-1}
range of x/(|x|)
range\:\frac{x}{\left|x\right|}
distance (-1,2),(4,1)
distance\:(-1,2),(4,1)
range of (9x-3)/(x-1)
range\:\frac{9x-3}{x-1}
inverse of f(x)=4x^2+16x+32
inverse\:f(x)=4x^{2}+16x+32
range of x^2+2x-2
range\:x^{2}+2x-2
range of f(x)=3^x+4
range\:f(x)=3^{x}+4
range of 2(1/2)^x-2
range\:2(\frac{1}{2})^{x}-2
periodicity of f(x)=-5tan(2x-pi/3)
periodicity\:f(x)=-5\tan(2x-\frac{π}{3})
inflection x^4-4x^3+6
inflection\:x^{4}-4x^{3}+6
inverse of f(x)= 3/(4-x)
inverse\:f(x)=\frac{3}{4-x}
inflection f(x)=(x^3)/3-x^2-8x
inflection\:f(x)=\frac{x^{3}}{3}-x^{2}-8x
domain of f(x)=(\sqrt[4]{x})^7
domain\:f(x)=(\sqrt[4]{x})^{7}
critical 6sqrt(x)-4x
critical\:6\sqrt{x}-4x
domain of f(x)=7x^2-7x
domain\:f(x)=7x^{2}-7x
perpendicular 3/4 x
perpendicular\:\frac{3}{4}x
inverse of 7^x
inverse\:7^{x}
domain of sqrt(1+cos(x))
domain\:\sqrt{1+\cos(x)}
asymptotes of f(x)=(5x-1)/(2x+3)
asymptotes\:f(x)=\frac{5x-1}{2x+3}
extreme f(x)=x^8e^x-7
extreme\:f(x)=x^{8}e^{x}-7
range of sqrt((2x-4)/3)
range\:\sqrt{\frac{2x-4}{3}}
inverse of y=-2/3 x+6
inverse\:y=-\frac{2}{3}x+6
domain of 7/(x-3)
domain\:\frac{7}{x-3}
y=(1/2)^x
y=(\frac{1}{2})^{x}
parity f(x)=(x+a)^2
parity\:f(x)=(x+a)^{2}
inverse of f(x)=sqrt(3x-6)
inverse\:f(x)=\sqrt{3x-6}
domain of f(x)=(-sqrt(7-2x))/(x^2+x+1)
domain\:f(x)=\frac{-\sqrt{7-2x}}{x^{2}+x+1}
slope ofintercept y=-1-3
slopeintercept\:y=-1-3
distance (-7,-2),(2,7)
distance\:(-7,-2),(2,7)
inverse of tan^2(x)
inverse\:\tan^{2}(x)
inverse of f(x)=((x+1))/((2x+1))
inverse\:f(x)=\frac{(x+1)}{(2x+1)}
inflection f(x)=(x-2)^2(x-4)^2
inflection\:f(x)=(x-2)^{2}(x-4)^{2}
extreme f(x)=-(8x)/(x^2+4)
extreme\:f(x)=-\frac{8x}{x^{2}+4}
domain of f(x)=3x^2-sqrt(x-5)
domain\:f(x)=3x^{2}-\sqrt{x-5}
asymptotes of x^2+52
asymptotes\:x^{2}+52
inverse of (2-x)/(1-x)
inverse\:\frac{2-x}{1-x}
symmetry 6x^2+12x-1
symmetry\:6x^{2}+12x-1
domain of f(x)=sqrt(\sqrt[3]{1-x)}
domain\:f(x)=\sqrt{\sqrt[3]{1-x}}
domain of f(x)=(x-2)/(x^2+3x-10)
domain\:f(x)=\frac{x-2}{x^{2}+3x-10}
domain of sqrt(5+8x)
domain\:\sqrt{5+8x}
intercepts of f(x)=x^2-7x-18
intercepts\:f(x)=x^{2}-7x-18
domain of f(x)=3(1/4)^x
domain\:f(x)=3(\frac{1}{4})^{x}
simplify (3.3)(8.9)
simplify\:(3.3)(8.9)
intercepts of x^3-4x
intercepts\:x^{3}-4x
extreme x^4-4x^3+9
extreme\:x^{4}-4x^{3}+9
midpoint (13x,-11x),(8x,x)
midpoint\:(13x,-11x),(8x,x)
inverse of f(x)=3+3x
inverse\:f(x)=3+3x
slope ofintercept 9y=-3x+5
slopeintercept\:9y=-3x+5
range of-3(x+6)^2+2
range\:-3(x+6)^{2}+2
domain of f(x)=((x+8))/((x)^{0.5)}
domain\:f(x)=\frac{(x+8)}{(x)^{0.5}}
asymptotes of f(x)=(-2x(2x-3))/((x-1)^2)
asymptotes\:f(x)=\frac{-2x(2x-3)}{(x-1)^{2}}
domain of (x-3)/4
domain\:\frac{x-3}{4}
monotone f(x)=2x^2+3x-4
monotone\:f(x)=2x^{2}+3x-4
midpoint (3,-1),(-5,2)
midpoint\:(3,-1),(-5,2)
inverse of 1/(1-x)
inverse\:\frac{1}{1-x}
domain of sqrt(-x)-3
domain\:\sqrt{-x}-3
intercepts of f(x)=-x^2+4x-3
intercepts\:f(x)=-x^{2}+4x-3
domain of 1/(6-x)
domain\:\frac{1}{6-x}
midpoint (6,2),(3,-7)
midpoint\:(6,2),(3,-7)
extreme f(x)=0.3x^2-66x+23114
extreme\:f(x)=0.3x^{2}-66x+23114
domain of sin(x^2)
domain\:\sin(x^{2})
monotone (x^2)/(x^2-4)
monotone\:\frac{x^{2}}{x^{2}-4}
inverse of f(x)= 1/4 x-7
inverse\:f(x)=\frac{1}{4}x-7
inflection x^{5/3}-x
inflection\:x^{\frac{5}{3}}-x
periodicity of f(x)=3cos((8pix)/5-4/3)
periodicity\:f(x)=3\cos(\frac{8πx}{5}-\frac{4}{3})
domain of sqrt(\sqrt{x-5)-5}
domain\:\sqrt{\sqrt{x-5}-5}
domain of f(x)=log_{5}(((x+1))/x)
domain\:f(x)=\log_{5}(\frac{(x+1)}{x})
slope ofintercept y=-5
slopeintercept\:y=-5
domain of 1/((x+1)^2)
domain\:\frac{1}{(x+1)^{2}}
range of f(x)=3-sqrt(1-x^2)
range\:f(x)=3-\sqrt{1-x^{2}}
inflection f(x)=-x^3+3x^2-6
inflection\:f(x)=-x^{3}+3x^{2}-6
inverse of f(x)=-x^2+6
inverse\:f(x)=-x^{2}+6
range of-5cos(x-pi/4)+2
range\:-5\cos(x-\frac{π}{4})+2
extreme f(x)= x/(x+6)
extreme\:f(x)=\frac{x}{x+6}
domain of f(x)=3^x-1
domain\:f(x)=3^{x}-1
parity f(x)=8xe^xcsc(x)
parity\:f(x)=8xe^{x}\csc(x)
slope of y=4(x-3)+15
slope\:y=4(x-3)+15
slope ofintercept 5x-2y=43
slopeintercept\:5x-2y=43
domain of f(x)=2x^2+2
domain\:f(x)=2x^{2}+2
domain of f(x)= 1/(x^2-7x+10)
domain\:f(x)=\frac{1}{x^{2}-7x+10}
inverse of f(x)=3(x+2)^2
inverse\:f(x)=3(x+2)^{2}
limit as x approaches infinity of 1/(a^x)
\lim\:_{x\to\:\infty\:}(\frac{1}{a^{x}})
extreme f(x)=cos(2x)
extreme\:f(x)=\cos(2x)
intercepts of f(x)=x^3+x^2-5x+3
intercepts\:f(x)=x^{3}+x^{2}-5x+3
range of g(x)=3+sqrt(x-4)
range\:g(x)=3+\sqrt{x-4}
range of y=sqrt(x^2-9)
range\:y=\sqrt{x^{2}-9}
1
..
404
405
406
407
408
..
1324