extreme 3/((x-1)(x^2-4))
|
extreme\:\frac{3}{(x-1)(x^{2}-4)}
|
f(x,y)=2x^2-8y^2-4x+9y+2
|
f(x,y)=2x^{2}-8y^{2}-4x+9y+2
|
inverse of f(x)=9x+13
|
inverse\:f(x)=9x+13
|
extreme f(x)=-6x^2-12x+18
|
extreme\:f(x)=-6x^{2}-12x+18
|
extreme x^2+10x+24
|
extreme\:x^{2}+10x+24
|
extreme (2x+2)/(x-2)
|
extreme\:\frac{2x+2}{x-2}
|
extreme f(x)=y=x^4-4x^2
|
extreme\:f(x)=y=x^{4}-4x^{2}
|
extreme sqrt(-x^2+2x)
|
extreme\:\sqrt{-x^{2}+2x}
|
extreme f(x)=xy+(50)/x+(20)/x
|
extreme\:f(x)=xy+\frac{50}{x}+\frac{20}{x}
|
extreme f(x)=5x^2-4x+4
|
extreme\:f(x)=5x^{2}-4x+4
|
extreme f(x)=-2x^2-3x+1
|
extreme\:f(x)=-2x^{2}-3x+1
|
extreme f(x)=-2x^2-3x+4
|
extreme\:f(x)=-2x^{2}-3x+4
|
inverse of f(x)=-1/2 x-2
|
inverse\:f(x)=-\frac{1}{2}x-2
|
extreme 1/(x^3-2x)
|
extreme\:\frac{1}{x^{3}-2x}
|
extreme f(x,y)=4y^3x^2-12y^2-36y+2
|
extreme\:f(x,y)=4y^{3}x^{2}-12y^{2}-36y+2
|
extreme f(x)=4x^2+5x-2
|
extreme\:f(x)=4x^{2}+5x-2
|
extreme f(x)=x^5+3x^4-2x+1
|
extreme\:f(x)=x^{5}+3x^{4}-2x+1
|
extreme f(x)=-2x^3+39x^2-240,4<= x<= 9
|
extreme\:f(x)=-2x^{3}+39x^{2}-240,4\le\:x\le\:9
|
extreme f(x)=3x^2e^{-2x}+1
|
extreme\:f(x)=3x^{2}e^{-2x}+1
|
extreme f(x)=8(x^2)/((x-6)),-3<= x<= 2
|
extreme\:f(x)=8\frac{x^{2}}{(x-6)},-3\le\:x\le\:2
|
extreme f(x)=-0.05x^2+300x+2000
|
extreme\:f(x)=-0.05x^{2}+300x+2000
|
f(x,y)=e^{x^2}+y^2+1
|
f(x,y)=e^{x^{2}}+y^{2}+1
|
extreme-20sin((2pi)/4)
|
extreme\:-20\sin(\frac{2π}{4})
|
asymptotes of f(x)=(8x^2+1)/(4x^2+2x-6)
|
asymptotes\:f(x)=\frac{8x^{2}+1}{4x^{2}+2x-6}
|
extreme f(x)=-x^{(3)}+12x^{(2)}+45x-52
|
extreme\:f(x)=-x^{(3)}+12x^{(2)}+45x-52
|
extreme f(x)=2cos(x)+x
|
extreme\:f(x)=2\cos(x)+x
|
extreme f(x)=2cos(x)-1
|
extreme\:f(x)=2\cos(x)-1
|
f(x,y)=yln(5x+9y)
|
f(x,y)=y\ln(5x+9y)
|
extreme f(x)=|-3x-2|,-4<x<2
|
extreme\:f(x)=\left|-3x-2\right|,-4<x<2
|
extreme f(x)=2+4x+100x^{-1}
|
extreme\:f(x)=2+4x+100x^{-1}
|
extreme f(x,y)=x^2+y^2-12x+16y
|
extreme\:f(x,y)=x^{2}+y^{2}-12x+16y
|
extreme x^{1/7}+1
|
extreme\:x^{\frac{1}{7}}+1
|
extreme f(x)=x^3+6x^2-6[-8.3]
|
extreme\:f(x)=x^{3}+6x^{2}-6[-8.3]
|
extreme f(x)=(8(x^2-1))/(3x^{1/3)}
|
extreme\:f(x)=\frac{8(x^{2}-1)}{3x^{\frac{1}{3}}}
|
inverse of f(x)=-x/5+3
|
inverse\:f(x)=-\frac{x}{5}+3
|
extreme f(x)=xsqrt(13-x^2)
|
extreme\:f(x)=x\sqrt{13-x^{2}}
|
extreme x^4-8x^2-10
|
extreme\:x^{4}-8x^{2}-10
|
extreme f(x)=(4x^2)/2+(x^2)/2
|
extreme\:f(x)=\frac{4x^{2}}{2}+\frac{x^{2}}{2}
|
extreme f(r,h)=2pirh+2pir^2
|
extreme\:f(r,h)=2πrh+2πr^{2}
|
g(t)=u(t)
|
g(t)=u(t)
|
extreme \sqrt[7]{7}
|
extreme\:\sqrt[7]{7}
|
extreme f(x)=x^3+10x-7
|
extreme\:f(x)=x^{3}+10x-7
|
extreme f(x)=9x-18cos(x)
|
extreme\:f(x)=9x-18\cos(x)
|
minimum x^1-x^2+2*x1^2+2*x^1*x^2+x2^2
|
minimum\:x^{1}-x^{2}+2\cdot\:x1^{2}+2\cdot\:x^{1}\cdot\:x^{2}+x2^{2}
|
asymptotes of f(x)= 4/(x+2)
|
asymptotes\:f(x)=\frac{4}{x+2}
|
minimum y=(x-1)/(x^2+35x)
|
minimum\:y=\frac{x-1}{x^{2}+35x}
|
minimum f(x)=-3x^2+12x-7
|
minimum\:f(x)=-3x^{2}+12x-7
|
f(xy)=8x3+20x2y+40y3
|
f(xy)=8x3+20x2y+40y3
|
extreme f(x)=-6x-(864)/x
|
extreme\:f(x)=-6x-\frac{864}{x}
|
extreme f(x)=4x^3+9x^2-12x+10
|
extreme\:f(x)=4x^{3}+9x^{2}-12x+10
|
f(x)=x^2+y^2+8x-2y+8
|
f(x)=x^{2}+y^{2}+8x-2y+8
|
minimum-2x^2-900
|
minimum\:-2x^{2}-900
|
f(3,2)=-(40000x)/((3+x^2+2y^2)^2)
|
f(3,2)=-\frac{40000x}{(3+x^{2}+2y^{2})^{2}}
|
extreme f(x)=(x^3-3x)(y+3)+y(y+6)
|
extreme\:f(x)=(x^{3}-3x)(y+3)+y(y+6)
|
extreme 4h^3-96h^2+527h
|
extreme\:4h^{3}-96h^{2}+527h
|
inverse of 5x+4
|
inverse\:5x+4
|
extreme f(x)=25x^2-25y^2+200x+200y+200
|
extreme\:f(x)=25x^{2}-25y^{2}+200x+200y+200
|
extreme x^2+y^2+6x-10y+5
|
extreme\:x^{2}+y^{2}+6x-10y+5
|
extreme y=-5x^3+4x^2+5x-1
|
extreme\:y=-5x^{3}+4x^{2}+5x-1
|
extreme f(x)=(9x^2-1)/x
|
extreme\:f(x)=\frac{9x^{2}-1}{x}
|
extreme (x-3)*(x+2)*x
|
extreme\:(x-3)\cdot\:(x+2)\cdot\:x
|
extreme y=5+12x^2-8x^3
|
extreme\:y=5+12x^{2}-8x^{3}
|
extreme (x+2)(x+1)(x-1)(x-3)
|
extreme\:(x+2)(x+1)(x-1)(x-3)
|
extreme f(x)=*0.002d^2+0.7d+6.9
|
extreme\:f(x)=\cdot\:0.002d^{2}+0.7d+6.9
|
extreme f(x)=x+16y^2-x^2+xy-3y^2+25
|
extreme\:f(x)=x+16y^{2}-x^{2}+xy-3y^{2}+25
|
extreme f(x,y)=3x^2+3y^2-6x+12y
|
extreme\:f(x,y)=3x^{2}+3y^{2}-6x+12y
|
domain of y=x(sqrt(x)-5)
|
domain\:y=x(\sqrt{x}-5)
|
extreme (3x)/(x^2-1)
|
extreme\:\frac{3x}{x^{2}-1}
|
extreme f(x)=(9(x^2-3))/(x^3)
|
extreme\:f(x)=\frac{9(x^{2}-3)}{x^{3}}
|
minimum y=x^4-2x^2+1
|
minimum\:y=x^{4}-2x^{2}+1
|
extreme f(x)=8sin(2x)
|
extreme\:f(x)=8\sin(2x)
|
extreme f(x)=-20x^2-30y^2+560x+360y+180
|
extreme\:f(x)=-20x^{2}-30y^{2}+560x+360y+180
|
extreme (3x+5)/(5x^2+55x+120)
|
extreme\:\frac{3x+5}{5x^{2}+55x+120}
|
extreme f(x)=x^4e^{-7x}
|
extreme\:f(x)=x^{4}e^{-7x}
|
extreme f(x)=-6x^{5/3}+\sqrt[3]{x}
|
extreme\:f(x)=-6x^{\frac{5}{3}}+\sqrt[3]{x}
|
minimum y=8+2/x
|
minimum\:y=8+\frac{2}{x}
|
extreme f(x)=sqrt(49-x^2),(-7,7)
|
extreme\:f(x)=\sqrt{49-x^{2}},(-7,7)
|
extreme points of f(x)=-x^3-9x^2-27x-8
|
extreme\:points\:f(x)=-x^{3}-9x^{2}-27x-8
|
extreme 147-p^2
|
extreme\:147-p^{2}
|
extreme 40x^3+9x^2-12x-8
|
extreme\:40x^{3}+9x^{2}-12x-8
|
extreme f(x,y)=(x^2+3y^2)e^{1-x^2-y^2}
|
extreme\:f(x,y)=(x^{2}+3y^{2})e^{1-x^{2}-y^{2}}
|
extreme f(y)=-x^3-5x^2-7x+3
|
extreme\:f(y)=-x^{3}-5x^{2}-7x+3
|
extreme f(x)=(7-x)/(6+x)
|
extreme\:f(x)=\frac{7-x}{6+x}
|
extreme f(x,y)=x^2-2x+8y^2+2
|
extreme\:f(x,y)=x^{2}-2x+8y^{2}+2
|
extreme x^3-8x^2+16x
|
extreme\:x^{3}-8x^{2}+16x
|
extreme f(x,y)=15x^2-2x^3+3y^2+6xy
|
extreme\:f(x,y)=15x^{2}-2x^{3}+3y^{2}+6xy
|
minimum 4x^{3/4}-x,0<= x<= 256
|
minimum\:4x^{\frac{3}{4}}-x,0\le\:x\le\:256
|
extreme (2x+1)/(x^2+12x+48)
|
extreme\:\frac{2x+1}{x^{2}+12x+48}
|
periodicity of-cos(3(theta-(pi)/6))
|
periodicity\:-\cos(3(\theta-\frac{\pi}{6}))
|
extreme f(x)=x^3-2x^2+3,(2,7)
|
extreme\:f(x)=x^{3}-2x^{2}+3,(2,7)
|
minimum 2cos(x)-2
|
minimum\:2\cos(x)-2
|
extreme f(x)=x^2(x+3)^4
|
extreme\:f(x)=x^{2}(x+3)^{4}
|
f(y)=6-3x-2y
|
f(y)=6-3x-2y
|
minimum y^2-120y
|
minimum\:y^{2}-120y
|
extreme f(x)=4-3x^3
|
extreme\:f(x)=4-3x^{3}
|
extreme y=ln(x+2)+4/(x+2)
|
extreme\:y=\ln(x+2)+\frac{4}{x+2}
|
f(x,y)=x^2-3xy+x/y
|
f(x,y)=x^{2}-3xy+\frac{x}{y}
|
minimum f(x)=9x-(5x)ln(x),(0,infinity)
|
minimum\:f(x)=9x-(5x)\ln(x),(0,\infty\:)
|
critical points of f(x)=x^2-10x
|
critical\:points\:f(x)=x^{2}-10x
|
extreme f(x,y)=x^3+y^3-27xy
|
extreme\:f(x,y)=x^{3}+y^{3}-27xy
|