extreme f(x)=x^2+6
|
extreme\:f(x)=x^{2}+6
|
extreme f(x)=6sqrt(x^2+1)-x,0<= x<= 3
|
extreme\:f(x)=6\sqrt{x^{2}+1}-x,0\le\:x\le\:3
|
slope intercept of y=-3x+3
|
slope\:intercept\:y=-3x+3
|
extreme f(x)=x^2-x-5
|
extreme\:f(x)=x^{2}-x-5
|
extreme 5x^3+67.5x^2+2x+10
|
extreme\:5x^{3}+67.5x^{2}+2x+10
|
extreme f(x)=25x^2-x^3
|
extreme\:f(x)=25x^{2}-x^{3}
|
extreme f(x)=4x^2-16x+20
|
extreme\:f(x)=4x^{2}-16x+20
|
extreme g(x)=-50x^2+400x+500
|
extreme\:g(x)=-50x^{2}+400x+500
|
f(x)=4x+5y
|
f(x)=4x+5y
|
extreme x^{11}-3x^9+2
|
extreme\:x^{11}-3x^{9}+2
|
minimum f(x)=sqrt(x+1)
|
minimum\:f(x)=\sqrt{x+1}
|
minimum x^3-2x^2-4x-4
|
minimum\:x^{3}-2x^{2}-4x-4
|
extreme 9x^3-7x^2+3x+10
|
extreme\:9x^{3}-7x^{2}+3x+10
|
domain of f(x)=sqrt(7x+20)
|
domain\:f(x)=\sqrt{7x+20}
|
extreme f(x)=4+27x-x^3
|
extreme\:f(x)=4+27x-x^{3}
|
extreme f(x)=-(8x)/((x^2+1)^2)
|
extreme\:f(x)=-\frac{8x}{(x^{2}+1)^{2}}
|
extreme f(x)= x/((1+x)^2)
|
extreme\:f(x)=\frac{x}{(1+x)^{2}}
|
extreme f(x)=y=x^2-4x+19
|
extreme\:f(x)=y=x^{2}-4x+19
|
extreme f(x)=-6e^{-x^2}
|
extreme\:f(x)=-6e^{-x^{2}}
|
extreme-16x+56y-x^2+4xy-6y^2+6
|
extreme\:-16x+56y-x^{2}+4xy-6y^{2}+6
|
minimum y=x^2+10x+21
|
minimum\:y=x^{2}+10x+21
|
extreme f(x)=189x-(x^2)/(354)
|
extreme\:f(x)=189x-\frac{x^{2}}{354}
|
extreme y=x^3+6x-6
|
extreme\:y=x^{3}+6x-6
|
extreme f(x)=f(x,y)=7(x-y)e^{-x^2-y^2}
|
extreme\:f(x)=f(x,y)=7(x-y)e^{-x^{2}-y^{2}}
|
intercepts of f(x)=9x-7y=14
|
intercepts\:f(x)=9x-7y=14
|
extreme 6xye^{-x^2-y^2}
|
extreme\:6xye^{-x^{2}-y^{2}}
|
extreme-x+2cos(x),0<= x<= 2pi
|
extreme\:-x+2\cos(x),0\le\:x\le\:2π
|
extreme f(x)=(4x^2)/(3+x)
|
extreme\:f(x)=\frac{4x^{2}}{3+x}
|
extreme 125x^3-15x+1
|
extreme\:125x^{3}-15x+1
|
extreme f(x)=x^2+xy+2x+2y+3
|
extreme\:f(x)=x^{2}+xy+2x+2y+3
|
extreme f(x)=x(e^x)
|
extreme\:f(x)=x(e^{x})
|
f(x,y)=2x^2+2y^2-x^4-y^4+3
|
f(x,y)=2x^{2}+2y^{2}-x^{4}-y^{4}+3
|
extreme sin(2x)+cos(2x)
|
extreme\:\sin(2x)+\cos(2x)
|
extreme f(x)= x/((x^2+4))
|
extreme\:f(x)=\frac{x}{(x^{2}+4)}
|
extreme f(x)=-0.5x^2
|
extreme\:f(x)=-0.5x^{2}
|
domain of f(x)=4(1.5)^x-3
|
domain\:f(x)=4(1.5)^{x}-3
|
extreme f(x)=5xe^{-5x}
|
extreme\:f(x)=5xe^{-5x}
|
extreme y=x^3-3x^2-9x
|
extreme\:y=x^{3}-3x^{2}-9x
|
extreme f(x)=xe^{-2x^2-2y^2}
|
extreme\:f(x)=xe^{-2x^{2}-2y^{2}}
|
extreme f(z)=z+z^3-2z^2-4
|
extreme\:f(z)=z+z^{3}-2z^{2}-4
|
extreme f(x)=1+1/x+5/(x^2)+1/(x^3)
|
extreme\:f(x)=1+\frac{1}{x}+\frac{5}{x^{2}}+\frac{1}{x^{3}}
|
extreme f(x)=(x^2-0.8x+0.32)/(1.6-2x)
|
extreme\:f(x)=\frac{x^{2}-0.8x+0.32}{1.6-2x}
|
extreme f(x)=3x^2-9x+9xy^2
|
extreme\:f(x)=3x^{2}-9x+9xy^{2}
|
extreme f(x)=|(x-2)/(x+5)|-3
|
extreme\:f(x)=\left|\frac{x-2}{x+5}\right|-3
|
extreme 2x^4-x^2+5
|
extreme\:2x^{4}-x^{2}+5
|
extreme f(x)=7x^9-9x^7-5(-3.4)
|
extreme\:f(x)=7x^{9}-9x^{7}-5(-3.4)
|
extreme points of f(x)=-x^3+2x^2+15x-5
|
extreme\:points\:f(x)=-x^{3}+2x^{2}+15x-5
|
extreme f(x)=-3+x^2-3x-3x^3+2x^5+4x^4
|
extreme\:f(x)=-3+x^{2}-3x-3x^{3}+2x^{5}+4x^{4}
|
extreme f(x)=-x^3+6x^2+135x+1
|
extreme\:f(x)=-x^{3}+6x^{2}+135x+1
|
extreme x^2-8x+15
|
extreme\:x^{2}-8x+15
|
extreme x^2-8x+13
|
extreme\:x^{2}-8x+13
|
extreme f(x)=2x^2-5x+2
|
extreme\:f(x)=2x^{2}-5x+2
|
extreme f(x)= x/(ln(x))[2.1]
|
extreme\:f(x)=\frac{x}{\ln(x)}[2.1]
|
extreme f(x)=x^4-72x^2-2,-7<= x<= 7
|
extreme\:f(x)=x^{4}-72x^{2}-2,-7\le\:x\le\:7
|
extreme f(x)=x^2+10x^{2/3}
|
extreme\:f(x)=x^{2}+10x^{\frac{2}{3}}
|
extreme y=-x^2+1-,1<= x<= 2
|
extreme\:y=-x^{2}+1-,1\le\:x\le\:2
|
domain of f(x)=(56x+49)/(x^2)
|
domain\:f(x)=\frac{56x+49}{x^{2}}
|
extreme f(x)=3x^4-12x^3-60x^2+4
|
extreme\:f(x)=3x^{4}-12x^{3}-60x^{2}+4
|
minimum f(x)=13e^{-x}
|
minimum\:f(x)=13e^{-x}
|
extreme f(x)=-x^4-6x
|
extreme\:f(x)=-x^{4}-6x
|
P(X,Y)=36X^2-9Y^2
|
P(X,Y)=36X^{2}-9Y^{2}
|
extreme f(x)=9x^2-2
|
extreme\:f(x)=9x^{2}-2
|
extreme 4/(sqrt(x))
|
extreme\:\frac{4}{\sqrt{x}}
|
extreme f(x)=-4x^2+40x-60
|
extreme\:f(x)=-4x^{2}+40x-60
|
minimum 1/(x^2+2x-8)
|
minimum\:\frac{1}{x^{2}+2x-8}
|
extreme f(x)=9x^2+3
|
extreme\:f(x)=9x^{2}+3
|
extreme 2x^2-6x+(20)/x+30
|
extreme\:2x^{2}-6x+\frac{20}{x}+30
|
inverse of f(x)= 5/(5x-16)
|
inverse\:f(x)=\frac{5}{5x-16}
|
extreme f(x)=x^2-8x,-infinity <x<= 8
|
extreme\:f(x)=x^{2}-8x,-\infty\:<x\le\:8
|
extreme 5x+5sin(x),0<= x<= 2pi
|
extreme\:5x+5\sin(x),0\le\:x\le\:2π
|
extreme f(x)=106x-x^2-950
|
extreme\:f(x)=106x-x^{2}-950
|
extreme f(x)=(-3x)/(sqrt(x^2+6))
|
extreme\:f(x)=\frac{-3x}{\sqrt{x^{2}+6}}
|
extreme f(x)= 1/(x^2-4x-21)
|
extreme\:f(x)=\frac{1}{x^{2}-4x-21}
|
P(x,y)=16x^2-9y^2
|
P(x,y)=16x^{2}-9y^{2}
|
extreme f(x)=1920x-10x^3
|
extreme\:f(x)=1920x-10x^{3}
|
extreme f(x)=100e^{-0.062*x}
|
extreme\:f(x)=100e^{-0.062\cdot\:x}
|
extreme f(x)=7sin^2(x)-14cos(x)
|
extreme\:f(x)=7\sin^{2}(x)-14\cos(x)
|
extreme f(x)=-3x^2-30x-21
|
extreme\:f(x)=-3x^{2}-30x-21
|
y=z-x
|
y=z-x
|
S(r,α)=rα
|
S(r,α)=rα
|
f(x,y)=5004+x^2+y^2
|
f(x,y)=5004+x^{2}+y^{2}
|
extreme f(x)=2x^3-6x^2-210x+1,-6<= x<= 8
|
extreme\:f(x)=2x^{3}-6x^{2}-210x+1,-6\le\:x\le\:8
|
extreme f(x)=ln(x^2+3x+9)
|
extreme\:f(x)=\ln(x^{2}+3x+9)
|
extreme f(x)=4x^2+x^2=2
|
extreme\:f(x)=4x^{2}+x^{2}=2
|
extreme f(x)=((x-ln(x)))/x
|
extreme\:f(x)=\frac{(x-\ln(x))}{x}
|
extreme f(x,y)=e^{10x^2+4y^2+2}
|
extreme\:f(x,y)=e^{10x^{2}+4y^{2}+2}
|
extreme f(x)=ln(x^2+3x+8)
|
extreme\:f(x)=\ln(x^{2}+3x+8)
|
extreme f(x)=9sin(3x)
|
extreme\:f(x)=9\sin(3x)
|
intercepts of f(y)=4x+12
|
intercepts\:f(y)=4x+12
|
extreme f(x,y)=16-8x+10y
|
extreme\:f(x,y)=16-8x+10y
|
extreme f(x)=20sin(2x)
|
extreme\:f(x)=20\sin(2x)
|
extreme x(3-x)
|
extreme\:x(3-x)
|
f(x)=y*e^x+x*ln(y)
|
f(x)=y\cdot\:e^{x}+x\cdot\:\ln(y)
|
extreme f(x)=(x^{(2/3)})(1-x^2)
|
extreme\:f(x)=(x^{(\frac{2}{3})})(1-x^{2})
|
extreme f(x,y)=(69120)/x+(69120)/y+5xy
|
extreme\:f(x,y)=\frac{69120}{x}+\frac{69120}{y}+5xy
|
extreme f(x)=4x^2-8x+7y^2+8
|
extreme\:f(x)=4x^{2}-8x+7y^{2}+8
|
extreme (2x-5)/(3\sqrt[3]{x)}+x^{2/3}
|
extreme\:\frac{2x-5}{3\sqrt[3]{x}}+x^{\frac{2}{3}}
|
extreme f(x)=2(csc(x)+sec(x))
|
extreme\:f(x)=2(\csc(x)+\sec(x))
|
extreme f(x)=4sec((pix)/3)-pi/2+1
|
extreme\:f(x)=4\sec(\frac{πx}{3})-\frac{π}{2}+1
|
inflection points of f(x)= 2/7 x^3-2x+6
|
inflection\:points\:f(x)=\frac{2}{7}x^{3}-2x+6
|