inverse of f(x)=\sqrt[3]{x/7}-9
|
inverse\:f(x)=\sqrt[3]{\frac{x}{7}}-9
|
extreme f(x)=(x^3)/3+x
|
extreme\:f(x)=\frac{x^{3}}{3}+x
|
extreme f(x)=(9sin(x)-9)(2cos(x)sqrt(3))
|
extreme\:f(x)=(9\sin(x)-9)(2\cos(x)\sqrt{3})
|
extreme f(x)=-x^3-4.5x^2+12x-2
|
extreme\:f(x)=-x^{3}-4.5x^{2}+12x-2
|
extreme x^2y-xy+3y^2
|
extreme\:x^{2}y-xy+3y^{2}
|
extreme 6/(x^2+2)
|
extreme\:\frac{6}{x^{2}+2}
|
extreme f(x)=2-x^3
|
extreme\:f(x)=2-x^{3}
|
extreme (6x^2-x^4)/9
|
extreme\:\frac{6x^{2}-x^{4}}{9}
|
extreme f(x)= x/(x^2-x+2)
|
extreme\:f(x)=\frac{x}{x^{2}-x+2}
|
extreme f(x)=7x-28sqrt(x)
|
extreme\:f(x)=7x-28\sqrt{x}
|
extreme f(x)=((xy)-λ(6x+y-20))
|
extreme\:f(x)=((xy)-λ(6x+y-20))
|
domain of f(x)=\sqrt[3]{x^3}
|
domain\:f(x)=\sqrt[3]{x^{3}}
|
extreme y=(x+3)/2
|
extreme\:y=\frac{x+3}{2}
|
f(x,y)=3x^2-xy+y^2-11x
|
f(x,y)=3x^{2}-xy+y^{2}-11x
|
f(x,y)=(x-1)^2-(y-1)^2
|
f(x,y)=(x-1)^{2}-(y-1)^{2}
|
f(x,y)=x^2+y^2+2x-18y
|
f(x,y)=x^{2}+y^{2}+2x-18y
|
extreme f(x)=161000x-100x^{21}
|
extreme\:f(x)=161000x-100x^{21}
|
extreme f(x)=-6x^2e^{-x}-4
|
extreme\:f(x)=-6x^{2}e^{-x}-4
|
extreme f(x)=2.2+2.6x-0.8x^2
|
extreme\:f(x)=2.2+2.6x-0.8x^{2}
|
extreme f(x)=-4x^3+12x^2+36+3
|
extreme\:f(x)=-4x^{3}+12x^{2}+36+3
|
extreme f(x)=3^{2/3}-2x(-1.1)
|
extreme\:f(x)=3^{\frac{2}{3}}-2x(-1.1)
|
inflection points of y=e^{-x^2}
|
inflection\:points\:y=e^{-x^{2}}
|
extreme f(x)=-0.001x^2+6x-1900
|
extreme\:f(x)=-0.001x^{2}+6x-1900
|
extreme h(x)=5(x-1)^{2/3},0<= x<= 2
|
extreme\:h(x)=5(x-1)^{\frac{2}{3}},0\le\:x\le\:2
|
extreme f(x)=-4x^3+6x^2+6
|
extreme\:f(x)=-4x^{3}+6x^{2}+6
|
extreme f(x,y)= 5/2 x^2+xy^2+5y^2
|
extreme\:f(x,y)=\frac{5}{2}x^{2}+xy^{2}+5y^{2}
|
extreme f(x)=(\sqrt[3]{6x^2-x^3})
|
extreme\:f(x)=(\sqrt[3]{6x^{2}-x^{3}})
|
extreme f(x)=7x^3-7x^2+7
|
extreme\:f(x)=7x^{3}-7x^{2}+7
|
extreme y=-(4x)/(x^2+1)
|
extreme\:y=-\frac{4x}{x^{2}+1}
|
extreme f(x)=(-2)/3 x^3-6x^2-10x+80
|
extreme\:f(x)=\frac{-2}{3}x^{3}-6x^{2}-10x+80
|
domain of 1/(x+8)
|
domain\:\frac{1}{x+8}
|
extreme (4x+5)/(x-7)
|
extreme\:\frac{4x+5}{x-7}
|
extreme g(θ)=4θ-7sin(θ),0<= θ<= pi
|
extreme\:g(θ)=4θ-7\sin(θ),0\le\:θ\le\:π
|
minimum x^2+14x+46.2
|
minimum\:x^{2}+14x+46.2
|
extreme f(x)=x+ln(x^2-1)
|
extreme\:f(x)=x+\ln(x^{2}-1)
|
extreme f(x)=2x^3-33x^2+168x+7
|
extreme\:f(x)=2x^{3}-33x^{2}+168x+7
|
extreme f(x)=5t+5cot(t/2)
|
extreme\:f(x)=5t+5\cot(\frac{t}{2})
|
extreme P(x,y)=10x^2-10y^2
|
extreme\:P(x,y)=10x^{2}-10y^{2}
|
extreme f(x)=x^2e^{1-x}
|
extreme\:f(x)=x^{2}e^{1-x}
|
extreme (3-x)(x-5)^2
|
extreme\:(3-x)(x-5)^{2}
|
f(x,y)= 1/x+1/y-xy+3
|
f(x,y)=\frac{1}{x}+\frac{1}{y}-xy+3
|
intercepts of f(x)=x^3-6x^2+3x+10
|
intercepts\:f(x)=x^{3}-6x^{2}+3x+10
|
extreme f(x)=x^3+y^3+9x^2-9y^2-2
|
extreme\:f(x)=x^{3}+y^{3}+9x^{2}-9y^{2}-2
|
extreme f(x)=((x))/((6x+2)),5<= x<= 8
|
extreme\:f(x)=\frac{(x)}{(6x+2)},5\le\:x\le\:8
|
extreme f(x,y)=(x-1)^3+(x-1)^2+(y+1)^2
|
extreme\:f(x,y)=(x-1)^{3}+(x-1)^{2}+(y+1)^{2}
|
extreme f(x,y)=x^2-2y^2-x+y
|
extreme\:f(x,y)=x^{2}-2y^{2}-x+y
|
extreme (x+3)(x-6)^2
|
extreme\:(x+3)(x-6)^{2}
|
extreme f(x)=x^4-18x^2+1,-6<= x<= 6
|
extreme\:f(x)=x^{4}-18x^{2}+1,-6\le\:x\le\:6
|
extreme f(x)=3x^5-25x^3+60x
|
extreme\:f(x)=3x^{5}-25x^{3}+60x
|
extreme x^2+xy+y^2-7x-3y
|
extreme\:x^{2}+xy+y^{2}-7x-3y
|
extreme 10x^{1/2}-x[100]
|
extreme\:10x^{\frac{1}{2}}-x[100]
|
extreme f(x)=2x^3-2x^2-2x+6
|
extreme\:f(x)=2x^{3}-2x^{2}-2x+6
|
extreme f(x)=(4x^2-64)^{1/5}
|
extreme\:f(x)=(4x^{2}-64)^{\frac{1}{5}}
|
f(x,y)=e^{y^2+x^3-6xy-6x+2y}
|
f(x,y)=e^{y^{2}+x^{3}-6xy-6x+2y}
|
extreme (2x+4)/(x^2-16)
|
extreme\:\frac{2x+4}{x^{2}-16}
|
extreme f(x)=x^2 1/(x-1)
|
extreme\:f(x)=x^{2}\frac{1}{x-1}
|
extreme f(x)=x[18-2(x)]^2
|
extreme\:f(x)=x[18-2(x)]^{2}
|
extreme f(x,y)=x^2-3y^2-8x+9y+3xy
|
extreme\:f(x,y)=x^{2}-3y^{2}-8x+9y+3xy
|
f(d,y)= d/(d2)(y)
|
f(d,y)=\frac{d}{d2}(y)
|
extreme y=-5cos(3x)-2
|
extreme\:y=-5\cos(3x)-2
|
extreme f(x,y)=3x^{1/3}y^{1/3}
|
extreme\:f(x,y)=3x^{\frac{1}{3}}y^{\frac{1}{3}}
|
extreme f(x)=(x^2)/(sqrt(x)-1)
|
extreme\:f(x)=\frac{x^{2}}{\sqrt{x}-1}
|
critical points of f(x)=3t^5-5t^3
|
critical\:points\:f(x)=3t^{5}-5t^{3}
|
extreme P(-8.5)Q(-4.11)
|
extreme\:P(-8.5)Q(-4.11)
|
extreme x^3+8x^2-6x-4
|
extreme\:x^{3}+8x^{2}-6x-4
|
extreme f(x)=-13/9 x^2+8/3 x^2+37/10
|
extreme\:f(x)=-\frac{13}{9}x^{2}+\frac{8}{3}x^{2}+\frac{37}{10}
|
extreme ((x-4))/(x^2)
|
extreme\:\frac{(x-4)}{x^{2}}
|
extreme f(x)=(2x-6)/(sqrt(x^2+7)-4)
|
extreme\:f(x)=\frac{2x-6}{\sqrt{x^{2}+7}-4}
|
extreme f(x)=(5+x)+(1000+100x)
|
extreme\:f(x)=(5+x)+(1000+100x)
|
extreme f(x)=-(x/3)^3+2x^2+12x+1
|
extreme\:f(x)=-(\frac{x}{3})^{3}+2x^{2}+12x+1
|
extreme f(x)=y=5+6x-8x^3
|
extreme\:f(x)=y=5+6x-8x^{3}
|
extreme f(x)=(2x+4)/(x^2+4)
|
extreme\:f(x)=\frac{2x+4}{x^{2}+4}
|
extreme f(x)=(6x+1)e^{8x-x^2}
|
extreme\:f(x)=(6x+1)e^{8x-x^{2}}
|
inverse of f(x)=6x^3-1
|
inverse\:f(x)=6x^{3}-1
|
extreme f(x)=x^4-3x^2,-2<= x<= 0
|
extreme\:f(x)=x^{4}-3x^{2},-2\le\:x\le\:0
|
extreme f(x)=4xe^{-x^2}
|
extreme\:f(x)=4xe^{-x^{2}}
|
extreme y=15xe^{-0.05x}-30
|
extreme\:y=15xe^{-0.05x}-30
|
extreme f(x)=(-4x)/(x^2+6),(0,6)
|
extreme\:f(x)=\frac{-4x}{x^{2}+6},(0,6)
|
extreme f(x)=2x^3+15x^2-36x+7,-6<x<2
|
extreme\:f(x)=2x^{3}+15x^{2}-36x+7,-6<x<2
|
minimum f(x)=13e^{-x},(0,4)
|
minimum\:f(x)=13e^{-x},(0,4)
|
minimum-y^2+120y
|
minimum\:-y^{2}+120y
|
extreme f(x)=x-1/x+2/(x^3),[0,infinity ]
|
extreme\:f(x)=x-\frac{1}{x}+\frac{2}{x^{3}},[0,\infty\:]
|
y=2x_{1}+4x_{2}
|
y=2x_{1}+4x_{2}
|
f(x,y)=-sqrt(25-x^2-y^2)
|
f(x,y)=-\sqrt{25-x^{2}-y^{2}}
|
distance (-6,5)(-2,5)
|
distance\:(-6,5)(-2,5)
|
midpoint (2,6)(10,4)
|
midpoint\:(2,6)(10,4)
|
extreme f(x)=(x+5)/(x-3),(-5,2)
|
extreme\:f(x)=\frac{x+5}{x-3},(-5,2)
|
extreme f(x)=-1/3 x^3-x^2-12
|
extreme\:f(x)=-\frac{1}{3}x^{3}-x^{2}-12
|
extreme f(x)=-(24x)/(x^2+9)
|
extreme\:f(x)=-\frac{24x}{x^{2}+9}
|
extreme-2x^2-12x-17
|
extreme\:-2x^{2}-12x-17
|
extreme f(x)=5xe^{-x},0<= x<= 2
|
extreme\:f(x)=5xe^{-x},0\le\:x\le\:2
|
extreme f(x)=2x^3-9x^2+60x+8
|
extreme\:f(x)=2x^{3}-9x^{2}+60x+8
|
extreme f(x)=150x-2x^3
|
extreme\:f(x)=150x-2x^{3}
|
extreme f(x)=(x^2-2x-8)^{1/3}
|
extreme\:f(x)=(x^{2}-2x-8)^{\frac{1}{3}}
|
extreme f(x)=x^2-10x-7
|
extreme\:f(x)=x^{2}-10x-7
|
extreme f(x)=(4x)^x,0.05<= x<= 1
|
extreme\:f(x)=(4x)^{x},0.05\le\:x\le\:1
|
inverse of f(x)= 3/(x^2)
|
inverse\:f(x)=\frac{3}{x^{2}}
|
extreme f(x)=ln(x^2+5x+9)
|
extreme\:f(x)=\ln(x^{2}+5x+9)
|
extreme f(x)=x^{1/2}-x^{3/2}
|
extreme\:f(x)=x^{\frac{1}{2}}-x^{\frac{3}{2}}
|
extreme f(χ)=χ^2e^{-4χ^2}
|
extreme\:f(χ)=χ^{2}e^{-4χ^{2}}
|