extreme f(x)=(y-800)/(-2)
|
extreme\:f(x)=\frac{y-800}{-2}
|
extreme (x-1)e^{1/x}
|
extreme\:(x-1)e^{\frac{1}{x}}
|
extreme f(x)=x^4+x^2(y-2)+3(y-1)^2
|
extreme\:f(x)=x^{4}+x^{2}(y-2)+3(y-1)^{2}
|
f(x,y)=2e^xln(1+y)
|
f(x,y)=2e^{x}\ln(1+y)
|
extreme f(x)=9(x-4)^2+5
|
extreme\:f(x)=9(x-4)^{2}+5
|
extreme f(x,y)=2x^2+y^2+xy^2
|
extreme\:f(x,y)=2x^{2}+y^{2}+xy^{2}
|
extreme f(x)=-16+4ln(x)
|
extreme\:f(x)=-16+4\ln(x)
|
asymptotes of f(x)=(2x+1)/(16x^2+1)
|
asymptotes\:f(x)=\frac{2x+1}{16x^{2}+1}
|
extreme f(x,y)=x^2-2y^2+xy-3x+3y+4
|
extreme\:f(x,y)=x^{2}-2y^{2}+xy-3x+3y+4
|
extreme f(x)=(x^3)/3+x^2-8x
|
extreme\:f(x)=\frac{x^{3}}{3}+x^{2}-8x
|
extreme-x^4y^2-x^4+2x^3y+2x^2y+x^2-2x-2
|
extreme\:-x^{4}y^{2}-x^{4}+2x^{3}y+2x^{2}y+x^{2}-2x-2
|
f(x*y)=xy+8^{xy}
|
f(x\cdot\:y)=xy+8^{xy}
|
extreme f(x)=x^2-6x+12
|
extreme\:f(x)=x^{2}-6x+12
|
extreme f(t)= x/(x+25)[0.9]
|
extreme\:f(t)=\frac{x}{x+25}[0.9]
|
extreme f(x)=-x^3+3x^2+429x+5242
|
extreme\:f(x)=-x^{3}+3x^{2}+429x+5242
|
extreme f(t)=108t-t^3
|
extreme\:f(t)=108t-t^{3}
|
extreme f(x)=2x^3+6x^2-90x+1,-5<= x<= 7
|
extreme\:f(x)=2x^{3}+6x^{2}-90x+1,-5\le\:x\le\:7
|
extreme f(x)=x^4+2x^3-2x^2+2x+1
|
extreme\:f(x)=x^{4}+2x^{3}-2x^{2}+2x+1
|
parity f(x)=(x-3)^2
|
parity\:f(x)=(x-3)^{2}
|
extreme 1/(sqrt(2pi))e^{-(x-3)^{2/2}}
|
extreme\:\frac{1}{\sqrt{2π}}e^{-(x-3)^{\frac{2}{2}}}
|
extreme f(x)=4(e^{-0.05x}-e^{-0.55x})
|
extreme\:f(x)=4(e^{-0.05x}-e^{-0.55x})
|
extreme f(x)=-x^3+1.5x^2+36x+2
|
extreme\:f(x)=-x^{3}+1.5x^{2}+36x+2
|
extreme f(x,y)=2x^2+y^2-4x+6y
|
extreme\:f(x,y)=2x^{2}+y^{2}-4x+6y
|
extreme y=xe^{-2x}
|
extreme\:y=xe^{-2x}
|
F(X,Y)=2X+3YX2
|
F(X,Y)=2X+3YX2
|
extreme f(x)=x+3y^2=25
|
extreme\:f(x)=x+3y^{2}=25
|
extreme f(x)=110.2x-0.4x^2-20.2-2000
|
extreme\:f(x)=110.2x-0.4x^{2}-20.2-2000
|
extreme f(x)=(x^3)/3-16x^2+240x-36
|
extreme\:f(x)=\frac{x^{3}}{3}-16x^{2}+240x-36
|
intercepts of f(x)=(x^2-4x+3)/(-x+3)
|
intercepts\:f(x)=\frac{x^{2}-4x+3}{-x+3}
|
extreme y=4x^3-8x
|
extreme\:y=4x^{3}-8x
|
extreme f(x)= 7/(4-3sin^2(x))
|
extreme\:f(x)=\frac{7}{4-3\sin^{2}(x)}
|
extreme |x^2-5|,1<x<7
|
extreme\:\left|x^{2}-5\right|,1<x<7
|
extreme (x-7)(x-5)^2(x-3)(x-1)
|
extreme\:(x-7)(x-5)^{2}(x-3)(x-1)
|
extreme (400)/(1+8e^{0.05x)}
|
extreme\:\frac{400}{1+8e^{0.05x}}
|
extreme x^4-50x^2+2
|
extreme\:x^{4}-50x^{2}+2
|
extreme 1+(ln(x))
|
extreme\:1+(\ln(x))
|
f(x,y)=3x^2+3x-2y+4y^2-12xy
|
f(x,y)=3x^{2}+3x-2y+4y^{2}-12xy
|
extreme f(x,y)=x^2-y^2-9x-2y
|
extreme\:f(x,y)=x^{2}-y^{2}-9x-2y
|
extreme f(x)=2x^3-9x^2+3,-2<= x<= 2
|
extreme\:f(x)=2x^{3}-9x^{2}+3,-2\le\:x\le\:2
|
extreme points of f(x)=x^2-6x+10
|
extreme\:points\:f(x)=x^{2}-6x+10
|
extreme f(x,y)=x^3+y^3+3xy^2-18x-18y
|
extreme\:f(x,y)=x^{3}+y^{3}+3xy^{2}-18x-18y
|
extreme f(x)=2x^4-36x^2
|
extreme\:f(x)=2x^{4}-36x^{2}
|
f(x)=25(x^2-y^2)-2(x^2+y^2)^2
|
f(x)=25(x^{2}-y^{2})-2(x^{2}+y^{2})^{2}
|
extreme f(x)=2x^3+4x^2+2x
|
extreme\:f(x)=2x^{3}+4x^{2}+2x
|
f(x,y)=80x^{4/10}y^{2/10}
|
f(x,y)=80x^{\frac{4}{10}}y^{\frac{2}{10}}
|
extreme 5(x-4)^{2/3}
|
extreme\:5(x-4)^{\frac{2}{3}}
|
f(x)=5x^2y+3xy^8+23
|
f(x)=5x^{2}y+3xy^{8}+23
|
extreme f(x)=5xe^{-4x}
|
extreme\:f(x)=5xe^{-4x}
|
extreme f(x)=f(x)=5+54x-2x^3,0<= x<= 4
|
extreme\:f(x)=f(x)=5+54x-2x^{3},0\le\:x\le\:4
|
inverse of f(x)=log_{8}(x+3)+4
|
inverse\:f(x)=\log_{8}(x+3)+4
|
extreme f(x)=sqrt(82x^2+180x+100)
|
extreme\:f(x)=\sqrt{82x^{2}+180x+100}
|
extreme P(x,y)=x^2+y^2+16x-16y
|
extreme\:P(x,y)=x^{2}+y^{2}+16x-16y
|
extreme f(x)=-0.001x^2+9x-1296
|
extreme\:f(x)=-0.001x^{2}+9x-1296
|
minimum 0.5x^2+15x+5000
|
minimum\:0.5x^{2}+15x+5000
|
minimum x^3+3x^2+1
|
minimum\:x^{3}+3x^{2}+1
|
extreme f(x)=((500+500*x))/(1+0.04*x^2)
|
extreme\:f(x)=\frac{(500+500\cdot\:x)}{1+0.04\cdot\:x^{2}}
|
minimum ((x^2+2))/((x^2-16))
|
minimum\:\frac{(x^{2}+2)}{(x^{2}-16)}
|
minimum y=2x^2+5
|
minimum\:y=2x^{2}+5
|
extreme f(x)=5x^4-20x^3+1
|
extreme\:f(x)=5x^{4}-20x^{3}+1
|
minimum y=x^2-2x-8
|
minimum\:y=x^{2}-2x-8
|
domain of f(x)=(sqrt(x-3))/(x-8)
|
domain\:f(x)=\frac{\sqrt{x-3}}{x-8}
|
extreme f(x)=0.001x^2+3.2x-10
|
extreme\:f(x)=0.001x^{2}+3.2x-10
|
extreme f(x,y)=x^2+y^2-2x-4y
|
extreme\:f(x,y)=x^{2}+y^{2}-2x-4y
|
extreme f(x)=-7x^2-7xy-6y^2-35x-26y+9
|
extreme\:f(x)=-7x^{2}-7xy-6y^{2}-35x-26y+9
|
extreme 3(x-4)^{2/3}+6
|
extreme\:3(x-4)^{\frac{2}{3}}+6
|
extreme y=x^3+3x^2
|
extreme\:y=x^{3}+3x^{2}
|
extreme f(x)=4x^{3/5}
|
extreme\:f(x)=4x^{\frac{3}{5}}
|
f(x)=x-(x/y)*y
|
f(x)=x-(\frac{x}{y})\cdot\:y
|
extreme f(x)=6x^3+27x^2-180x
|
extreme\:f(x)=6x^{3}+27x^{2}-180x
|
line 4x=-5y-5
|
line\:4x=-5y-5
|
extreme f(x)=(5-x)5^x
|
extreme\:f(x)=(5-x)5^{x}
|
f(x)=-4\sqrt[4]{x^2+y^2+81}
|
f(x)=-4\sqrt[4]{x^{2}+y^{2}+81}
|
extreme 2x^3-33x^2+108x+5
|
extreme\:2x^{3}-33x^{2}+108x+5
|
extreme f(x)=x^3-3/2 x^2,-2<= x<= 4
|
extreme\:f(x)=x^{3}-\frac{3}{2}x^{2},-2\le\:x\le\:4
|
extreme x^3-6x^2+2x-2
|
extreme\:x^{3}-6x^{2}+2x-2
|
extreme f(x)=x+4/x ,1<= x<= 10
|
extreme\:f(x)=x+\frac{4}{x},1\le\:x\le\:10
|
minimum 2θ-3sin(θ)
|
minimum\:2θ-3\sin(θ)
|
extreme f(x)=(x^5)/(20)-1x^3
|
extreme\:f(x)=\frac{x^{5}}{20}-1x^{3}
|
inverse of f(x)=-tan(x+3)-2
|
inverse\:f(x)=-\tan(x+3)-2
|
extreme f(x)=x^2+2x-30
|
extreme\:f(x)=x^{2}+2x-30
|
minimum-1/(x^2+49)-1/((x-5)^2+4)
|
minimum\:-\frac{1}{x^{2}+49}-\frac{1}{(x-5)^{2}+4}
|
extreme f(x)=x*(ln(x))^2
|
extreme\:f(x)=x\cdot\:(\ln(x))^{2}
|
extreme f(x)=x[36-2(x)]^2
|
extreme\:f(x)=x[36-2(x)]^{2}
|
extreme f(x)=sqrt(x+12)-8
|
extreme\:f(x)=\sqrt{x+12}-8
|
f(x,y)=4xy+120y-20y^2-1/10 x^2y-90
|
f(x,y)=4xy+120y-20y^{2}-\frac{1}{10}x^{2}y-90
|
extreme f(x,y)=2x^2+4y^2-2xy-10x-2y+2
|
extreme\:f(x,y)=2x^{2}+4y^{2}-2xy-10x-2y+2
|
extreme f(x)=(7x)/(x^2+9),0<= x<= 9
|
extreme\:f(x)=\frac{7x}{x^{2}+9},0\le\:x\le\:9
|
extreme 2x^3+4x^2-1
|
extreme\:2x^{3}+4x^{2}-1
|
extreme f(x)=x*(ln(x))^5
|
extreme\:f(x)=x\cdot\:(\ln(x))^{5}
|
midpoint (2,-4),(2,4)
|
midpoint\:(2,-4),(2,4)
|
range of e^{-5x-1/5}+5
|
range\:e^{-5x-\frac{1}{5}}+5
|
monotone intervals x^3-x^2-4x
|
monotone\:intervals\:x^{3}-x^{2}-4x
|
f(x,y)=40000x+30000y-8x^2-15y^2-10xy
|
f(x,y)=40000x+30000y-8x^{2}-15y^{2}-10xy
|
extreme f(x)=e^{x^3-3x}
|
extreme\:f(x)=e^{x^{3}-3x}
|
extreme f(x)=x+(30)/x
|
extreme\:f(x)=x+\frac{30}{x}
|
extreme (5x+4)/(x+sqrt(x))
|
extreme\:\frac{5x+4}{x+\sqrt{x}}
|
F(x,y)=x*y+(pi*(x/2)^2)/2
|
F(x,y)=x\cdot\:y+\frac{π\cdot\:(\frac{x}{2})^{2}}{2}
|
extreme f(x)=-(5x^4)/4-(4x^3)/3-4
|
extreme\:f(x)=-\frac{5x^{4}}{4}-\frac{4x^{3}}{3}-4
|
f(x)=4(z^{-x})+1
|
f(x)=4(z^{-x})+1
|
extreme y=15xe^{-x}
|
extreme\:y=15xe^{-x}
|