extreme f(x)=x^2+y^2+6x-12y-9
|
extreme\:f(x)=x^{2}+y^{2}+6x-12y-9
|
extreme f(x,y)=-x^2+2xy-7y^2+2x+10y+8
|
extreme\:f(x,y)=-x^{2}+2xy-7y^{2}+2x+10y+8
|
extreme f(x)=2xe^x-4x^3
|
extreme\:f(x)=2xe^{x}-4x^{3}
|
extreme f(x)=(x^2e^{3x})
|
extreme\:f(x)=(x^{2}e^{3x})
|
extreme f(x)=18500(0.25-r^2)
|
extreme\:f(x)=18500(0.25-r^{2})
|
extreme f(x)=-x^2+8x-15,3<= x<= 5
|
extreme\:f(x)=-x^{2}+8x-15,3\le\:x\le\:5
|
extreme f(x)=-2x^2-2y^2+20x+16y-4
|
extreme\:f(x)=-2x^{2}-2y^{2}+20x+16y-4
|
domain of f(x)= 1/(cos(x-\frac{pi){3})}
|
domain\:f(x)=\frac{1}{\cos(x-\frac{\pi}{3})}
|
extreme f(x)=x^3+3x^2-45x
|
extreme\:f(x)=x^{3}+3x^{2}-45x
|
extreme f(x)= 4/(x-2),2<x<= 6
|
extreme\:f(x)=\frac{4}{x-2},2<x\le\:6
|
f(x)=3x+2y+7
|
f(x)=3x+2y+7
|
extreme f(x)=2x^3+6x^2-48x
|
extreme\:f(x)=2x^{3}+6x^{2}-48x
|
extreme f(x)= 1/2 p(x,y)-cy=0
|
extreme\:f(x)=\frac{1}{2}p(x,y)-cy=0
|
f(x)=3x+2y-1
|
f(x)=3x+2y-1
|
y= 1/2 x+1/2 z-3/2
|
y=\frac{1}{2}x+\frac{1}{2}z-\frac{3}{2}
|
extreme f(x)=9x^6-11x^5
|
extreme\:f(x)=9x^{6}-11x^{5}
|
f(x)=2x+1
|
f(x)=2x+1
|
extreme f(x)=-13t^3+18t^2+37t+6
|
extreme\:f(x)=-13t^{3}+18t^{2}+37t+6
|
extreme y=(6x)/(x^2-9)
|
extreme\:y=\frac{6x}{x^{2}-9}
|
f(x)=(2x-3)/(x^2-3x)se
|
f(x)=\frac{2x-3}{x^{2}-3x}se
|
f(x,y)=x+y/(-x+3y)
|
f(x,y)=x+\frac{y}{-x+3y}
|
f(x,y)=9x^2y-9xy^3+9y^3
|
f(x,y)=9x^{2}y-9xy^{3}+9y^{3}
|
extreme f(x,y)=3x^2-5xy+6y^2+x-y
|
extreme\:f(x,y)=3x^{2}-5xy+6y^{2}+x-y
|
f(x)=((x-1)^2+(y+2)^2)/2
|
f(x)=\frac{(x-1)^{2}+(y+2)^{2}}{2}
|
extreme f(x)=-7(2x^3-125/32)^2+1
|
extreme\:f(x)=-7(2x^{3}-\frac{125}{32})^{2}+1
|
f(x)=((xy)^2+8000x+8000y)/(xy)
|
f(x)=\frac{(xy)^{2}+8000x+8000y}{xy}
|
f(x,y)= 1/((x+y))
|
f(x,y)=\frac{1}{(x+y)}
|
domain of (x-5)^2-9
|
domain\:(x-5)^{2}-9
|
minimum f(x)=x^4-2x^2
|
minimum\:f(x)=x^{4}-2x^{2}
|
extreme f(x)= 1/(sqrt(1-x^2))
|
extreme\:f(x)=\frac{1}{\sqrt{1-x^{2}}}
|
extreme f(x)=(x^2)/(x+1),-2<= x<= 2
|
extreme\:f(x)=\frac{x^{2}}{x+1},-2\le\:x\le\:2
|
extreme f(x)=(-x-8)/(10x^2-40x+27)
|
extreme\:f(x)=\frac{-x-8}{10x^{2}-40x+27}
|
extreme f(x,y)=4x^2+9y^2-2x-18xy^2
|
extreme\:f(x,y)=4x^{2}+9y^{2}-2x-18xy^{2}
|
extreme f(x)=(x^3)/3-10x^2+96x+100
|
extreme\:f(x)=\frac{x^{3}}{3}-10x^{2}+96x+100
|
extreme f(x)=-x^3+9x^2+120x-200,x>= 5
|
extreme\:f(x)=-x^{3}+9x^{2}+120x-200,x\ge\:5
|
extreme f(x)=x^{3/4}-2x^{3/4}
|
extreme\:f(x)=x^{\frac{3}{4}}-2x^{\frac{3}{4}}
|
extreme f(x)=x^{2/3}(x-6)
|
extreme\:f(x)=x^{\frac{2}{3}}(x-6)
|
intercepts of f(x)=(2x-4)/(x+3)
|
intercepts\:f(x)=\frac{2x-4}{x+3}
|
minimum f(x,y)=x^3-3xy+y^3
|
minimum\:f(x,y)=x^{3}-3xy+y^{3}
|
extreme (16a^4+16a)/(a^2+1-a)
|
extreme\:\frac{16a^{4}+16a}{a^{2}+1-a}
|
extreme f(x)=-2x^2-5xy-6y^2+32x+63y+9
|
extreme\:f(x)=-2x^{2}-5xy-6y^{2}+32x+63y+9
|
extreme f(x)=4sin(x)-3cos(x)
|
extreme\:f(x)=4\sin(x)-3\cos(x)
|
y=((Ix+2I-1)/(2x+3))e^{2x}
|
y=(\frac{Ix+2I-1}{2x+3})e^{2x}
|
extreme x+3/2 x^{2/3}
|
extreme\:x+\frac{3}{2}x^{\frac{2}{3}}
|
extreme+sqrt(|x^2-3x+2|)
|
extreme\:+\sqrt{\left|x^{2}-3x+2\right|}
|
inverse of (-1)/2 x+4
|
inverse\:\frac{-1}{2}x+4
|
f(x)=(-5x^2+10xy-20x-7y^2+240y-5300)
|
f(x)=(-5x^{2}+10xy-20x-7y^{2}+240y-5300)
|
extreme f(x,y)=3xy+6y-5x
|
extreme\:f(x,y)=3xy+6y-5x
|
y=In|1-x|
|
y=In\left|1-x\right|
|
extreme f(x)=-2x^2+3xy-9x
|
extreme\:f(x)=-2x^{2}+3xy-9x
|
extreme f(x)=sqrt(36-t^2)
|
extreme\:f(x)=\sqrt{36-t^{2}}
|
extreme-x^3+2x^2+4x+7
|
extreme\:-x^{3}+2x^{2}+4x+7
|
extreme f(x)=2x^3-39x^2+180x+1
|
extreme\:f(x)=2x^{3}-39x^{2}+180x+1
|
extreme y=6x-12
|
extreme\:y=6x-12
|
extreme 1353.01867…
|
extreme\:1353.01867…
|
extreme f(x)= 1/8 (x+4)^2(6-x)
|
extreme\:f(x)=\frac{1}{8}(x+4)^{2}(6-x)
|
domain of sqrt(36-x^2)+sqrt(x+3)
|
domain\:\sqrt{36-x^{2}}+\sqrt{x+3}
|
extreme f(x)=ln((4x^2)/(ln(x)))
|
extreme\:f(x)=\ln(\frac{4x^{2}}{\ln(x)})
|
extreme f(x)=-x^3+3x^2+9x-27
|
extreme\:f(x)=-x^{3}+3x^{2}+9x-27
|
extreme f(x)=2x^3+3x^2-2x-3
|
extreme\:f(x)=2x^{3}+3x^{2}-2x-3
|
extreme ((x+1))/(x^2-2x-3)
|
extreme\:\frac{(x+1)}{x^{2}-2x-3}
|
extreme f(x)=(x^2+2)/(x^2-9)
|
extreme\:f(x)=\frac{x^{2}+2}{x^{2}-9}
|
extreme f(x)=(x^3)/3-5x^2-50x+1
|
extreme\:f(x)=\frac{x^{3}}{3}-5x^{2}-50x+1
|
extreme 4/x+x^4
|
extreme\:\frac{4}{x}+x^{4}
|
extreme f(x,y)=9x^2-4y^2
|
extreme\:f(x,y)=9x^{2}-4y^{2}
|
extreme f(x)=120x-x^2-(950+14x)
|
extreme\:f(x)=120x-x^{2}-(950+14x)
|
extreme f(x)=(x^3)/3-3x^2+8x-2
|
extreme\:f(x)=\frac{x^{3}}{3}-3x^{2}+8x-2
|
intercepts of f(x)=(x-3)/((x-4)(x+2))
|
intercepts\:f(x)=\frac{x-3}{(x-4)(x+2)}
|
extreme f(x)=(x^3)/3-3x^2+8x-4
|
extreme\:f(x)=\frac{x^{3}}{3}-3x^{2}+8x-4
|
extreme f(x)=x^4+4/(3x^3)
|
extreme\:f(x)=x^{4}+\frac{4}{3x^{3}}
|
extreme f(x)=3x^2-18x+5
|
extreme\:f(x)=3x^{2}-18x+5
|
extreme f(x)= 7/4 x^2-21/2 x-43/3
|
extreme\:f(x)=\frac{7}{4}x^{2}-\frac{21}{2}x-\frac{43}{3}
|
extreme x*e^{-x^2+1}
|
extreme\:x\cdot\:e^{-x^{2}+1}
|
extreme 330x^2-1320x^3
|
extreme\:330x^{2}-1320x^{3}
|
extreme f(x)=(|x-3|)/(x^2-9)
|
extreme\:f(x)=\frac{\left|x-3\right|}{x^{2}-9}
|
extreme y=x^4ln(x/(10))
|
extreme\:y=x^{4}\ln(\frac{x}{10})
|
extreme f(x)=(18)/((x^2-9))
|
extreme\:f(x)=\frac{18}{(x^{2}-9)}
|
f(x)=3x
|
f(x)=3x
|
line m= 3/4 ,\at (3,-4)
|
line\:m=\frac{3}{4},\at\:(3,-4)
|
extreme f(x)=x^3-x^2-x+7,-1<= x<= 2
|
extreme\:f(x)=x^{3}-x^{2}-x+7,-1\le\:x\le\:2
|
extreme g(t)=8t-t^4
|
extreme\:g(t)=8t-t^{4}
|
f(x,y)=-4xy(x+y)-9
|
f(x,y)=-4xy(x+y)-9
|
f(x,y)=ln(10-x^2-y^2)
|
f(x,y)=\ln(10-x^{2}-y^{2})
|
extreme f(x)=(x^2-2x-3)/(x+5),-1<= x<= 3
|
extreme\:f(x)=\frac{x^{2}-2x-3}{x+5},-1\le\:x\le\:3
|
extreme y=10cos(x)+10sin(x)
|
extreme\:y=10\cos(x)+10\sin(x)
|
extreme ((-6x+21))/(((x+1)^4))
|
extreme\:\frac{(-6x+21)}{((x+1)^{4})}
|
extreme (-5)/(4x-8)
|
extreme\:\frac{-5}{4x-8}
|
extreme f(x)=f(x)=x^3-4x^2-3x+1
|
extreme\:f(x)=f(x)=x^{3}-4x^{2}-3x+1
|
extreme f(x)=x^3+3x^2-189x
|
extreme\:f(x)=x^{3}+3x^{2}-189x
|
inverse of f(x)=2x^3+3
|
inverse\:f(x)=2x^{3}+3
|
extreme f(x)=1-|x-7|
|
extreme\:f(x)=1-\left|x-7\right|
|
extreme f(x,y)=(x^2-49)^2+(y^2-9)^2
|
extreme\:f(x,y)=(x^{2}-49)^{2}+(y^{2}-9)^{2}
|
extreme f(x)=12x^2-x^3
|
extreme\:f(x)=12x^{2}-x^{3}
|
extreme x^3-3x+1,-3/2 <= x<= 3
|
extreme\:x^{3}-3x+1,-\frac{3}{2}\le\:x\le\:3
|
F(X,Y)=X(X+Y)+X(X+Y)
|
F(X,Y)=X(X+Y)+X(X+Y)
|
minimum-x^2-3.7x-6.5
|
minimum\:-x^{2}-3.7x-6.5
|
extreme f(x)=-2x^3+33x^2-168x+10
|
extreme\:f(x)=-2x^{3}+33x^{2}-168x+10
|
extreme f(x)=4x^3-6x^2-144x+1
|
extreme\:f(x)=4x^{3}-6x^{2}-144x+1
|
extreme f(x,y)=(20480)/x+(20480)/y+5xy
|
extreme\:f(x,y)=\frac{20480}{x}+\frac{20480}{y}+5xy
|
extreme f(x)=2x^3+6x^2-144x+2,-6<= x<= 5
|
extreme\:f(x)=2x^{3}+6x^{2}-144x+2,-6\le\:x\le\:5
|