f(x)=y^5-3xy
|
f(x)=y^{5}-3xy
|
extreme f(x,y)=x^2+y^2-2x+5y
|
extreme\:f(x,y)=x^{2}+y^{2}-2x+5y
|
extreme f(x)=3-4x-4/x
|
extreme\:f(x)=3-4x-\frac{4}{x}
|
extreme f(x,y)=-3x^2-4xy-8y^2+42x+68y+4
|
extreme\:f(x,y)=-3x^{2}-4xy-8y^{2}+42x+68y+4
|
extreme f(x)= 1/3 x^3-x^2+3x+4
|
extreme\:f(x)=\frac{1}{3}x^{3}-x^{2}+3x+4
|
extreme f(x)=2(2x-8)
|
extreme\:f(x)=2(2x-8)
|
extreme f(x)=-x^2-4x-9
|
extreme\:f(x)=-x^{2}-4x-9
|
extreme-47x^2+46.7x+68296.6
|
extreme\:-47x^{2}+46.7x+68296.6
|
intercepts of f(x)=2x^3+12x^2+16x
|
intercepts\:f(x)=2x^{3}+12x^{2}+16x
|
extreme f(x)= x/(x^2+16),0<= x<= 8
|
extreme\:f(x)=\frac{x}{x^{2}+16},0\le\:x\le\:8
|
extreme f(x,y)=x^2+xy+1/2 y^2-2x+y
|
extreme\:f(x,y)=x^{2}+xy+\frac{1}{2}y^{2}-2x+y
|
extreme f(x)=(x^2+11)/(x+5)
|
extreme\:f(x)=\frac{x^{2}+11}{x+5}
|
extreme f(x)=3-x[-1.2]
|
extreme\:f(x)=3-x[-1.2]
|
extreme f(x)=4-sqrt(x)
|
extreme\:f(x)=4-\sqrt{x}
|
f(x,y)=(x-2)^2+(y+1)^2
|
f(x,y)=(x-2)^{2}+(y+1)^{2}
|
extreme y=3sin(x)+sqrt(3)cos(x)
|
extreme\:y=3\sin(x)+\sqrt{3}\cos(x)
|
extreme f(x)=x^2+y^2-2x^2+4xy-2y^2
|
extreme\:f(x)=x^{2}+y^{2}-2x^{2}+4xy-2y^{2}
|
minimum 8x^4-48x^2
|
minimum\:8x^{4}-48x^{2}
|
extreme c
|
extreme\:c
|
intercepts of (x^2)/(x^2+16)
|
intercepts\:\frac{x^{2}}{x^{2}+16}
|
extreme f(x)=25x^2+81<90x
|
extreme\:f(x)=25x^{2}+81<90x
|
extreme f(x)=5+(8+7x)^{2/7}
|
extreme\:f(x)=5+(8+7x)^{\frac{2}{7}}
|
extreme 9
|
extreme\:9
|
extreme F
|
extreme\:F
|
extreme y=(6x)/(x^2+4)
|
extreme\:y=\frac{6x}{x^{2}+4}
|
extreme f(x)=4-3x-x^2
|
extreme\:f(x)=4-3x-x^{2}
|
extreme f(x)=f(x)=x^3-9x^2+15x+4
|
extreme\:f(x)=f(x)=x^{3}-9x^{2}+15x+4
|
extreme f(x)=(x^2+81)/(4x),1<= x<= 12
|
extreme\:f(x)=\frac{x^{2}+81}{4x},1\le\:x\le\:12
|
f(x,y)=1+x^2-y^2
|
f(x,y)=1+x^{2}-y^{2}
|
inverse of 9-2x^2
|
inverse\:9-2x^{2}
|
extreme f(x,y)=2x^2+3xy+4y^2-5x+2
|
extreme\:f(x,y)=2x^{2}+3xy+4y^{2}-5x+2
|
extreme f(x)=xe^{-(x^2)/(32)}[-3.8]
|
extreme\:f(x)=xe^{-\frac{x^{2}}{32}}[-3.8]
|
U(X,Y)=2X+5Y
|
U(X,Y)=2X+5Y
|
minimum f(x)=ln(x^2+x+1),-1<= x<= 1
|
minimum\:f(x)=\ln(x^{2}+x+1),-1\le\:x\le\:1
|
f(x,y)=5x^2-5y^2
|
f(x,y)=5x^{2}-5y^{2}
|
extreme f(x)=3x^4-x^2+4x-2
|
extreme\:f(x)=3x^{4}-x^{2}+4x-2
|
minimum f(x)=x^4+8x^3+3
|
minimum\:f(x)=x^{4}+8x^{3}+3
|
f(x,y)=3x+4y+1
|
f(x,y)=3x+4y+1
|
extreme f(x)=2x^4+2y^4-xy
|
extreme\:f(x)=2x^{4}+2y^{4}-xy
|
f(4.6)=x^y
|
f(4.6)=x^{y}
|
domain of f(x)=b
|
domain\:f(x)=b
|
E(X,Y)=(X+Y)^2-3(X+Y)(X-Y)
|
E(X,Y)=(X+Y)^{2}-3(X+Y)(X-Y)
|
extreme x^2-7x+13
|
extreme\:x^{2}-7x+13
|
f(x,y)=2xye^{-x^2-y^2}
|
f(x,y)=2xye^{-x^{2}-y^{2}}
|
extreme f(x)=x^3-6x^2+9x-7
|
extreme\:f(x)=x^{3}-6x^{2}+9x-7
|
extreme f(x)=2x^5-x^4-9x^3+13x^2-5x
|
extreme\:f(x)=2x^{5}-x^{4}-9x^{3}+13x^{2}-5x
|
extreme y=((x+1))/(x^2+4x-5)
|
extreme\:y=\frac{(x+1)}{x^{2}+4x-5}
|
extreme f(x)=\sqrt[3]{x^2+27}
|
extreme\:f(x)=\sqrt[3]{x^{2}+27}
|
extreme f(x)=sqrt(x)(x+4),x>= 0
|
extreme\:f(x)=\sqrt{x}(x+4),x\ge\:0
|
extreme f(x)=190+8x^3+x^4
|
extreme\:f(x)=190+8x^{3}+x^{4}
|
asymptotes of f(x)=(6x)/(2+x)
|
asymptotes\:f(x)=\frac{6x}{2+x}
|
extreme y=4-6x+x^2
|
extreme\:y=4-6x+x^{2}
|
extreme f(x)=0.002x^2+3.4x-20
|
extreme\:f(x)=0.002x^{2}+3.4x-20
|
f(x,y)=x^3+2y^2-27x-8y-4
|
f(x,y)=x^{3}+2y^{2}-27x-8y-4
|
extreme f(x)=x^{1/3}+9
|
extreme\:f(x)=x^{\frac{1}{3}}+9
|
extreme f(x)=(x^2+y^2)^2=2*(x^2-y^2)
|
extreme\:f(x)=(x^{2}+y^{2})^{2}=2\cdot\:(x^{2}-y^{2})
|
extreme x^3+3xy^2-3x
|
extreme\:x^{3}+3xy^{2}-3x
|
extreme f(x)=x^{2/3}(x-2),-2<= x<= 2
|
extreme\:f(x)=x^{\frac{2}{3}}(x-2),-2\le\:x\le\:2
|
f(x)=x^2-2x-log_{3}(y)
|
f(x)=x^{2}-2x-\log_{3}(y)
|
f(x)=7-(y)e^{-0.45x}
|
f(x)=7-(y)e^{-0.45x}
|
f(x)=x2
|
f(x)=x2
|
extreme f(x)=x^3-36x^2,-12<= x<= 36
|
extreme\:f(x)=x^{3}-36x^{2},-12\le\:x\le\:36
|
extreme f(x)=(6-2x)(3-2x)x
|
extreme\:f(x)=(6-2x)(3-2x)x
|
minimum (x^3+30x+128)/x ,10<= x<= 20
|
minimum\:\frac{x^{3}+30x+128}{x},10\le\:x\le\:20
|
extreme e^{(y^2)/4-x^2-1}
|
extreme\:e^{\frac{y^{2}}{4}-x^{2}-1}
|
extreme f(x)=6x^2-4x+1,0<x<8
|
extreme\:f(x)=6x^{2}-4x+1,0<x<8
|
extreme-x^3-6x^2+3
|
extreme\:-x^{3}-6x^{2}+3
|
extreme f(x)=(69120)/x+(69120)/y+5xy
|
extreme\:f(x)=\frac{69120}{x}+\frac{69120}{y}+5xy
|
extreme f(x)=x^{2/3}(x+1)
|
extreme\:f(x)=x^{\frac{2}{3}}(x+1)
|
domain of f(x)= 1/(\sqrt[4]{x)}
|
domain\:f(x)=\frac{1}{\sqrt[4]{x}}
|
asymptotes of f(x)=(x-5)/(x^2-4x-12)
|
asymptotes\:f(x)=\frac{x-5}{x^{2}-4x-12}
|
extreme f(x)=x^2+4x((4000)/(x^2))
|
extreme\:f(x)=x^{2}+4x(\frac{4000}{x^{2}})
|
extreme f(x)=(1)^{1/3}*(-9)
|
extreme\:f(x)=(1)^{\frac{1}{3}}\cdot\:(-9)
|
extreme f(x)=-2x^2-x
|
extreme\:f(x)=-2x^{2}-x
|
extreme f(x)=x^{2/3}(x+4)
|
extreme\:f(x)=x^{\frac{2}{3}}(x+4)
|
f(x,y,λ)=x^2+y^2-(x+2y-5)
|
f(x,y,λ)=x^{2}+y^{2}-(x+2y-5)
|
extreme f(x)=7x^4-28x^{3+7}
|
extreme\:f(x)=7x^{4}-28x^{3+7}
|
extreme (3/2)^x
|
extreme\:(\frac{3}{2})^{x}
|
extreme f(x)=(x^3-1)/(x^3+1)
|
extreme\:f(x)=\frac{x^{3}-1}{x^{3}+1}
|
extreme f(x,y)=2x^2-5x+6y+2y^2
|
extreme\:f(x,y)=2x^{2}-5x+6y+2y^{2}
|
extreme f(x)=((-3x^3+8x^2-5x-62))/(x+2)
|
extreme\:f(x)=\frac{(-3x^{3}+8x^{2}-5x-62)}{x+2}
|
domain of 1/(2x^2-x-6)
|
domain\:\frac{1}{2x^{2}-x-6}
|
extreme f(x)=-0.5x^2+x
|
extreme\:f(x)=-0.5x^{2}+x
|
extreme y=-4x^3+x
|
extreme\:y=-4x^{3}+x
|
extreme f(x)=-2x^2-4
|
extreme\:f(x)=-2x^{2}-4
|
extreme y=xsqrt(4-x)
|
extreme\:y=x\sqrt{4-x}
|
extreme f(x)=(3x+1)^5(2x+3)^2(2-x)^3
|
extreme\:f(x)=(3x+1)^{5}(2x+3)^{2}(2-x)^{3}
|
extreme y=2x^3-12x^2-270x+2
|
extreme\:y=2x^{3}-12x^{2}-270x+2
|
minimum y=0.0004x^2-0.0118x+2.6821
|
minimum\:y=0.0004x^{2}-0.0118x+2.6821
|
extreme sqrt(x)(8/5 x^3-2x^2)
|
extreme\:\sqrt{x}(\frac{8}{5}x^{3}-2x^{2})
|
extreme f(x)=ln((4-x)/(2+2x))
|
extreme\:f(x)=\ln(\frac{4-x}{2+2x})
|
extreme f(x)=x^{(2)}-5x+4
|
extreme\:f(x)=x^{(2)}-5x+4
|
symmetry 9-(x-4)^2
|
symmetry\:9-(x-4)^{2}
|
f(y)=-0.06x^2-0.02y^2-1.5xy-85x+69y
|
f(y)=-0.06x^{2}-0.02y^{2}-1.5xy-85x+69y
|
extreme f(x)=3x+5
|
extreme\:f(x)=3x+5
|
p(t)=500e^{kt}
|
p(t)=500e^{kt}
|
extreme f(x)=400x^2-1600x^3,0<= x<= 0.25
|
extreme\:f(x)=400x^{2}-1600x^{3},0\le\:x\le\:0.25
|
extreme f(x)=xy-x^2+y^2+x+y
|
extreme\:f(x)=xy-x^{2}+y^{2}+x+y
|
extreme \sqrt[7]{x}
|
extreme\:\sqrt[7]{x}
|
extreme y= 1/2 x^4-4x^2+3
|
extreme\:y=\frac{1}{2}x^{4}-4x^{2}+3
|