extreme f(x)=3x^2+12xy+9x^2+y^3
|
extreme\:f(x)=3x^{2}+12xy+9x^{2}+y^{3}
|
inverse of f(x)=5x^3
|
inverse\:f(x)=5x^{3}
|
V(u,w)= 1/2 (3u+w)
|
V(u,w)=\frac{1}{2}(3u+w)
|
extreme f(x)=sqrt((4-x^2)^2)
|
extreme\:f(x)=\sqrt{(4-x^{2})^{2}}
|
extreme 3x+2y
|
extreme\:3x+2y
|
extreme 7te^{-t/(15)}
|
extreme\:7te^{-\frac{t}{15}}
|
f(x)=(2x-2y-10)
|
f(x)=(2x-2y-10)
|
extreme f(x)=4x^2-24x+29
|
extreme\:f(x)=4x^{2}-24x+29
|
P(x,y)=2x+5y
|
P(x,y)=2x+5y
|
extreme f(x)=210+8x^3+x^4
|
extreme\:f(x)=210+8x^{3}+x^{4}
|
extreme-6
|
extreme\:-6
|
extreme y=2x^2-8x+9
|
extreme\:y=2x^{2}-8x+9
|
extreme points of f(x)=3x^3-9x
|
extreme\:points\:f(x)=3x^{3}-9x
|
extreme (x-2)/(x-4)
|
extreme\:\frac{x-2}{x-4}
|
extreme f(x)=3-5(x+1)^2
|
extreme\:f(x)=3-5(x+1)^{2}
|
extreme xln(x^2)
|
extreme\:x\ln(x^{2})
|
extreme 8x+2/x
|
extreme\:8x+\frac{2}{x}
|
P(x,y)=2x+4y
|
P(x,y)=2x+4y
|
extreme f(x)=x^3-y^3+6xy-10
|
extreme\:f(x)=x^{3}-y^{3}+6xy-10
|
extreme f(x)=(4860)/x+11x+710272
|
extreme\:f(x)=\frac{4860}{x}+11x+710272
|
f(x,y)=(4-xy)/(2+x^2y^2)
|
f(x,y)=\frac{4-xy}{2+x^{2}y^{2}}
|
extreme f(x)=6+5x-5x^2
|
extreme\:f(x)=6+5x-5x^{2}
|
f(x,y,z)=ln(4-x-y)
|
f(x,y,z)=\ln(4-x-y)
|
inverse of f(x)=((5-3x))/2
|
inverse\:f(x)=\frac{(5-3x)}{2}
|
extreme (0.5x^2+4x-10)/(x-6)
|
extreme\:\frac{0.5x^{2}+4x-10}{x-6}
|
minimum f(x)=2x^2-8x-7
|
minimum\:f(x)=2x^{2}-8x-7
|
extreme f(x)=3cos(x)+3sin(x)
|
extreme\:f(x)=3\cos(x)+3\sin(x)
|
extreme f(x)=(x^2+4)/(2x)
|
extreme\:f(x)=\frac{x^{2}+4}{2x}
|
extreme f(x)=(5-x)e^x
|
extreme\:f(x)=(5-x)e^{x}
|
extreme f(x,y)=y^3-yx^2-3y^2*x^2+3x^4
|
extreme\:f(x,y)=y^{3}-yx^{2}-3y^{2}\cdot\:x^{2}+3x^{4}
|
extreme 2x^2-9x-1
|
extreme\:2x^{2}-9x-1
|
minimum sqrt(w^4-55w^2+1600)
|
minimum\:\sqrt{w^{4}-55w^{2}+1600}
|
extreme f(x)=x+(16)/x ,4<= x<= 25
|
extreme\:f(x)=x+\frac{16}{x},4\le\:x\le\:25
|
extreme f(x)=60x^3-120x
|
extreme\:f(x)=60x^{3}-120x
|
inverse of f(x)=8+sqrt(4+x)
|
inverse\:f(x)=8+\sqrt{4+x}
|
extreme 2y
|
extreme\:2y
|
f(x,y)=xy^2-x+1
|
f(x,y)=xy^{2}-x+1
|
extreme f(x)= 5/3 x^3(-65)/2 x^2+200x-1
|
extreme\:f(x)=\frac{5}{3}x^{3}\frac{-65}{2}x^{2}+200x-1
|
extreme e^x(21+9x-x^2)
|
extreme\:e^{x}(21+9x-x^{2})
|
extreme f(x)=x^2+y^2+x^2y+6
|
extreme\:f(x)=x^{2}+y^{2}+x^{2}y+6
|
extreme f(x)=x^{4/5}(8x+32)^2
|
extreme\:f(x)=x^{\frac{4}{5}}(8x+32)^{2}
|
extreme f^9
|
extreme\:f^{9}
|
extreme f(x)=x^2+y^2+x^2y+7
|
extreme\:f(x)=x^{2}+y^{2}+x^{2}y+7
|
extreme f(x)=-3/2 x+3
|
extreme\:f(x)=-\frac{3}{2}x+3
|
f(x,y)=-4x^2-8y^2+4x-16y+1
|
f(x,y)=-4x^{2}-8y^{2}+4x-16y+1
|
intercepts of f(x)=10x-7y+11=0
|
intercepts\:f(x)=10x-7y+11=0
|
minimum x+sqrt(4-x^2)
|
minimum\:x+\sqrt{4-x^{2}}
|
extreme 2000-10x*e^{5*((x^2)/8)}
|
extreme\:2000-10x\cdot\:e^{5\cdot\:(\frac{x^{2}}{8})}
|
extreme f(x)=3x^2-3y^2+6=0
|
extreme\:f(x)=3x^{2}-3y^{2}+6=0
|
extreme f(x)=sqrt(4-x^2),-2<= x<= 2
|
extreme\:f(x)=\sqrt{4-x^{2}},-2\le\:x\le\:2
|
extreme f(x,y)=2x^2+y^2-8x+8y
|
extreme\:f(x,y)=2x^{2}+y^{2}-8x+8y
|
extreme f(x)=(x^2-4)^{3/4}
|
extreme\:f(x)=(x^{2}-4)^{\frac{3}{4}}
|
extreme x^4-8x^3+7x^2+6x-4
|
extreme\:x^{4}-8x^{3}+7x^{2}+6x-4
|
extreme f(x,y)=5-(x-6)^2-(y+2)^2
|
extreme\:f(x,y)=5-(x-6)^{2}-(y+2)^{2}
|
extreme 2(x+5)
|
extreme\:2(x+5)
|
r(x)
|
r(x)
|
slope of y=(x+1)/6
|
slope\:y=\frac{x+1}{6}
|
inverse of f(x)=1+1/x
|
inverse\:f(x)=1+\frac{1}{x}
|
extreme f(x)=(2x(x^2-6x))/((x-2)^2)
|
extreme\:f(x)=\frac{2x(x^{2}-6x)}{(x-2)^{2}}
|
extreme f(x)=((x^4)/4)-2x^2+4
|
extreme\:f(x)=(\frac{x^{4}}{4})-2x^{2}+4
|
extreme f(x)=((x^2))/(x^2-1)
|
extreme\:f(x)=\frac{(x^{2})}{x^{2}-1}
|
minimum f(x)=-x^3+27x-61
|
minimum\:f(x)=-x^{3}+27x-61
|
Q(x,y)=(x+3y)(x-3xy+9y)
|
Q(x,y)=(x+3y)(x-3xy+9y)
|
minimum y=((x-6)^2+3)
|
minimum\:y=((x-6)^{2}+3)
|
E(a,b)=a5+a2b3-a3b2-b5
|
E(a,b)=a5+a2b3-a3b2-b5
|
extreme f(x)= 2/3 x^3-7/2 x^2+3x+16
|
extreme\:f(x)=\frac{2}{3}x^{3}-\frac{7}{2}x^{2}+3x+16
|
amplitude of 2sin((2pitheta)/5)
|
amplitude\:2\sin(\frac{2\pi\theta}{5})
|
extreme f(x,y)=x^2+4x+7y^2-28y+2
|
extreme\:f(x,y)=x^{2}+4x+7y^{2}-28y+2
|
extreme f(x)=x^2+2^x
|
extreme\:f(x)=x^{2}+2^{x}
|
extreme f(x)=x^2-4y^2-8x+40y+13
|
extreme\:f(x)=x^{2}-4y^{2}-8x+40y+13
|
extreme sqrt(x)ln(3x)
|
extreme\:\sqrt{x}\ln(3x)
|
extreme f(x)=3-7x^2
|
extreme\:f(x)=3-7x^{2}
|
extreme f(x)=12x^2-48x+32
|
extreme\:f(x)=12x^{2}-48x+32
|
extreme f(x)= 12/7 x^7-60x^5+576x^3
|
extreme\:f(x)=\frac{12}{7}x^{7}-60x^{5}+576x^{3}
|
extreme f(x)= 1/x-ln(x)
|
extreme\:f(x)=\frac{1}{x}-\ln(x)
|
extreme f(x,y)=e^{5x^2+5y^2+3}
|
extreme\:f(x,y)=e^{5x^{2}+5y^{2}+3}
|
extreme f(x)=-2x^3+42x^2-240x+5
|
extreme\:f(x)=-2x^{3}+42x^{2}-240x+5
|
domain of f(x)=(x-2)/(x^2+4)
|
domain\:f(x)=\frac{x-2}{x^{2}+4}
|
minimum y=6x-x^2-2
|
minimum\:y=6x-x^{2}-2
|
extreme f(x)= 1/((x^2-2x+7))
|
extreme\:f(x)=\frac{1}{(x^{2}-2x+7)}
|
extreme f(x)=3x^2-27
|
extreme\:f(x)=3x^{2}-27
|
minimum x^2-14x+3
|
minimum\:x^{2}-14x+3
|
extreme f(x)=39+6x+(54)/x
|
extreme\:f(x)=39+6x+\frac{54}{x}
|
minimum (e^x)/(x^4)
|
minimum\:\frac{e^{x}}{x^{4}}
|
F(x,y)=x^2+xy+y^2+3x-3y+4
|
F(x,y)=x^{2}+xy+y^{2}+3x-3y+4
|
inverse of f(x)= 4/(x-3)
|
inverse\:f(x)=\frac{4}{x-3}
|
extreme f(x,y)=6-2x+4y-x^2-4y^2
|
extreme\:f(x,y)=6-2x+4y-x^{2}-4y^{2}
|
extreme f(x)=(4x-1)^2
|
extreme\:f(x)=(4x-1)^{2}
|
extreme f(x)=5x^2-10x+2,-4<= x<= 2
|
extreme\:f(x)=5x^{2}-10x+2,-4\le\:x\le\:2
|
extreme f(x)=x+sin(x),-pi/2 <= x<= pi/2
|
extreme\:f(x)=x+\sin(x),-\frac{π}{2}\le\:x\le\:\frac{π}{2}
|
f(x,y)=8x^2+7y^2
|
f(x,y)=8x^{2}+7y^{2}
|
minimum xsqrt(x+7)
|
minimum\:x\sqrt{x+7}
|
f(y)=xy
|
f(y)=xy
|
extreme f(x)=-x^2+120x-3200
|
extreme\:f(x)=-x^{2}+120x-3200
|
extreme 2x^3-3x^2-36x+54
|
extreme\:2x^{3}-3x^{2}-36x+54
|
minimum 2x^2-xy+y^2+7x
|
minimum\:2x^{2}-xy+y^{2}+7x
|
inverse of 1/(x+4)-2
|
inverse\:\frac{1}{x+4}-2
|
f(x,y)=x^3+2xy^2+(y^4)/x
|
f(x,y)=x^{3}+2xy^{2}+\frac{y^{4}}{x}
|
extreme f(x)=2-3xx>=-1
|
extreme\:f(x)=2-3xx\ge\:-1
|
extreme f(x)=x^4-242x^2-5
|
extreme\:f(x)=x^{4}-242x^{2}-5
|