extreme f(x)=x+9/x+2
|
extreme\:f(x)=x+\frac{9}{x}+2
|
extreme f(x,y)=x^3+y^3-3x-12y+30
|
extreme\:f(x,y)=x^{3}+y^{3}-3x-12y+30
|
f(x,y)=-3x^2+2y^2
|
f(x,y)=-3x^{2}+2y^{2}
|
extreme+2.5t^2+6t
|
extreme\:+2.5t^{2}+6t
|
extreme f(x)=8x^3-6x^2
|
extreme\:f(x)=8x^{3}-6x^{2}
|
extreme f(x)=e^{-2x^2}-3y^2+2y
|
extreme\:f(x)=e^{-2x^{2}}-3y^{2}+2y
|
extreme f(x)=3x^2-12x+2
|
extreme\:f(x)=3x^{2}-12x+2
|
extreme f(x)=x^4-8x+4
|
extreme\:f(x)=x^{4}-8x+4
|
extreme x^2y+2xy-y^2-3y
|
extreme\:x^{2}y+2xy-y^{2}-3y
|
extreme f(x,y)=2x^2+xy+4y^2-2x+10y
|
extreme\:f(x,y)=2x^{2}+xy+4y^{2}-2x+10y
|
line 4x-y=9
|
line\:4x-y=9
|
extreme f(x)=x^3-6x^2-9x-2
|
extreme\:f(x)=x^{3}-6x^{2}-9x-2
|
extreme f(x)=x*sqrt(500-x)
|
extreme\:f(x)=x\cdot\:\sqrt{500-x}
|
extreme f(x)=-8x^2+x^4
|
extreme\:f(x)=-8x^{2}+x^{4}
|
extreme f(x)=(x^3-3x)^{1/2}
|
extreme\:f(x)=(x^{3}-3x)^{\frac{1}{2}}
|
extreme f(t)=108t-t^3,-7<= t<infinity
|
extreme\:f(t)=108t-t^{3},-7\le\:t<\infty\:
|
extreme f(x)=2ln(x)1+3ln(x)2+3ln(x)3
|
extreme\:f(x)=2\ln(x)1+3\ln(x)2+3\ln(x)3
|
minimum f(x)=3x^4-2x^3
|
minimum\:f(x)=3x^{4}-2x^{3}
|
extreme f(x)=ln(x),0<x<= 4
|
extreme\:f(x)=\ln(x),0<x\le\:4
|
f(x,y)=e-(x^2+y^2-6y)
|
f(x,y)=e-(x^{2}+y^{2}-6y)
|
distance (-2,1)(3,-1)
|
distance\:(-2,1)(3,-1)
|
asymptotes of (x^2)/(x-7)
|
asymptotes\:\frac{x^{2}}{x-7}
|
extreme 2x^3+6x^2-48x
|
extreme\:2x^{3}+6x^{2}-48x
|
extreme f(x)=-2x^2-20x+8
|
extreme\:f(x)=-2x^{2}-20x+8
|
extreme f(x)=x^5-x^3+1
|
extreme\:f(x)=x^{5}-x^{3}+1
|
extreme y= x/(x^2+16)
|
extreme\:y=\frac{x}{x^{2}+16}
|
extreme-x^3(x-3)
|
extreme\:-x^{3}(x-3)
|
extreme f(x)= 4/3 x^3-13/2 x^2-3x+11
|
extreme\:f(x)=\frac{4}{3}x^{3}-\frac{13}{2}x^{2}-3x+11
|
extreme f(x)=3x^3-14x+20x-8
|
extreme\:f(x)=3x^{3}-14x+20x-8
|
extreme f(x)=(2x^2-5x)^3
|
extreme\:f(x)=(2x^{2}-5x)^{3}
|
extreme f(x)=x^{4/5}(x-2)
|
extreme\:f(x)=x^{\frac{4}{5}}(x-2)
|
asymptotes of f(x)=(x^3+1)/(x^3+x)
|
asymptotes\:f(x)=\frac{x^{3}+1}{x^{3}+x}
|
extreme y=xe^{((5-x))/4}
|
extreme\:y=xe^{\frac{(5-x)}{4}}
|
extreme 2cos(x)-cos(2x)
|
extreme\:2\cos(x)-\cos(2x)
|
minimum f(x,y)=x^2-xy+y^2-2x+2y
|
minimum\:f(x,y)=x^{2}-xy+y^{2}-2x+2y
|
extreme f(x)=-x^2+3x+2
|
extreme\:f(x)=-x^{2}+3x+2
|
extreme f(x)=8x-16cos(x)
|
extreme\:f(x)=8x-16\cos(x)
|
minimum x^2+xy+y^2+3y
|
minimum\:x^{2}+xy+y^{2}+3y
|
f(x,y)=x^2+xy+y^2-9
|
f(x,y)=x^{2}+xy+y^{2}-9
|
extreme f(x,y)=23-2x^3-y^2-6xy
|
extreme\:f(x,y)=23-2x^{3}-y^{2}-6xy
|
domain of (-1)/(3x)
|
domain\:\frac{-1}{3x}
|
extreme f(xy)=xy+4/x+2/y
|
extreme\:f(xy)=xy+\frac{4}{x}+\frac{2}{y}
|
extreme f(x)=xy+y-11x
|
extreme\:f(x)=xy+y-11x
|
extreme 3cos^2(x)
|
extreme\:3\cos^{2}(x)
|
extreme f(x)=6x-8sin(x),0<= x<= pi
|
extreme\:f(x)=6x-8\sin(x),0\le\:x\le\:π
|
f(x)=(15x^2-2x-7)/(-5x-1)y
|
f(x)=\frac{15x^{2}-2x-7}{-5x-1}y
|
extreme f(x)=e^{x^2}(x^2-5)+8
|
extreme\:f(x)=e^{x^{2}}(x^{2}-5)+8
|
extreme f(x)=2+5e^{-0.1x}
|
extreme\:f(x)=2+5e^{-0.1x}
|
extreme (3x)/(sqrt(5-x))
|
extreme\:\frac{3x}{\sqrt{5-x}}
|
extreme f(x)=x^3+9x^2+15x+1
|
extreme\:f(x)=x^{3}+9x^{2}+15x+1
|
extreme-0.001x^2+4.6x-90
|
extreme\:-0.001x^{2}+4.6x-90
|
range of f(x)=(3x^2)/(2x^2-32)
|
range\:f(x)=\frac{3x^{2}}{2x^{2}-32}
|
extreme f(x)=x-4*ln(x-4)
|
extreme\:f(x)=x-4\cdot\:\ln(x-4)
|
extreme f(x)=x^2+xy+1/2 y^2-5x+y
|
extreme\:f(x)=x^{2}+xy+\frac{1}{2}y^{2}-5x+y
|
f(x,y)=x^3+9x^2+y^2+24x+2y+17
|
f(x,y)=x^{3}+9x^{2}+y^{2}+24x+2y+17
|
extreme f(x)=(2x-5)/(x+6)
|
extreme\:f(x)=\frac{2x-5}{x+6}
|
extreme 2^{x^2-5}
|
extreme\:2^{x^{2}-5}
|
extreme f(x)=x^{3/4}-4x^{1/4}
|
extreme\:f(x)=x^{\frac{3}{4}}-4x^{\frac{1}{4}}
|
extreme f(x)=x= 2/x
|
extreme\:f(x)=x=\frac{2}{x}
|
extreme f(x)=sqrt(420-x)x
|
extreme\:f(x)=\sqrt{420-x}x
|
extreme f(x)=3x^2-10x-25
|
extreme\:f(x)=3x^{2}-10x-25
|
S(x,y)=3x-2y+(3x-5y)-2x+[3y-(2x-7y)+4x]
|
S(x,y)=3x-2y+(3x-5y)-2x+[3y-(2x-7y)+4x]
|
inverse of f(x)=(4x-8)/(x+6)
|
inverse\:f(x)=(4x-8)/(x+6)
|
extreme f(x)=5-5x+x^2
|
extreme\:f(x)=5-5x+x^{2}
|
P(x,y)=m^2xm+3ym+7-m^3xm+7ym+4+mxm+8ym+6
|
P(x,y)=m^{2}xm+3ym+7-m^{3}xm+7ym+4+mxm+8ym+6
|
extreme x^2-5a^2
|
extreme\:x^{2}-5a^{2}
|
extreme f(x,y)=(x-y)(xy-1)
|
extreme\:f(x,y)=(x-y)(xy-1)
|
f(x)=3x+y-6
|
f(x)=3x+y-6
|
extreme ((e^{-x}))/(x-5)+1
|
extreme\:\frac{(e^{-x})}{x-5}+1
|
extreme f(x)=xe^{-3x},0<= x<= 2
|
extreme\:f(x)=xe^{-3x},0\le\:x\le\:2
|
extreme f(x)= x/(x^2+1)[-1.2]
|
extreme\:f(x)=\frac{x}{x^{2}+1}[-1.2]
|
extreme ((x^2-1))/((x-3)6)
|
extreme\:\frac{(x^{2}-1)}{(x-3)6}
|
extreme f(x)=v(x)=x(7-x)(15-x),0<x<7
|
extreme\:f(x)=v(x)=x(7-x)(15-x),0<x<7
|
parity (dy)/y
|
parity\:\frac{dy}{y}
|
extreme f(x)=6x^2-8x+3
|
extreme\:f(x)=6x^{2}-8x+3
|
f(x,y)=-25x^2-25y^2+300x+350y+190
|
f(x,y)=-25x^{2}-25y^{2}+300x+350y+190
|
f(x,y)=x^2-2xy+2y^2x
|
f(x,y)=x^{2}-2xy+2y^{2}x
|
extreme f(x)=56-18x+3x^2
|
extreme\:f(x)=56-18x+3x^{2}
|
extreme f(x)=3+4x^2-x^4
|
extreme\:f(x)=3+4x^{2}-x^{4}
|
extreme y= 1/3 x^3-5/2 x^2+6x-2
|
extreme\:y=\frac{1}{3}x^{3}-\frac{5}{2}x^{2}+6x-2
|
f(x,y)=x^2-2xy-3x+6
|
f(x,y)=x^{2}-2xy-3x+6
|
extreme f(x)=6+12x-3x^2
|
extreme\:f(x)=6+12x-3x^{2}
|
extreme f(x)=e^{x^2-9}
|
extreme\:f(x)=e^{x^{2}-9}
|
domain of f(x)= 1/(2x^2+3)
|
domain\:f(x)=\frac{1}{2x^{2}+3}
|
extreme f(x)=5ye^x-6e^y
|
extreme\:f(x)=5ye^{x}-6e^{y}
|
f(x)=x_{2}-4*2-4x
|
f(x)=x_{2}-4\cdot\:2-4x
|
extreme f(x)=x^2-9ln(x)
|
extreme\:f(x)=x^{2}-9\ln(x)
|
extreme f(x)=(1/12 x^3+x^2+3x+26/3)
|
extreme\:f(x)=(\frac{1}{12}x^{3}+x^{2}+3x+\frac{26}{3})
|
extreme f(x)=-5x^3+45x
|
extreme\:f(x)=-5x^{3}+45x
|
extreme f(x)=-0.020724x^2+0.3692x-0.6287
|
extreme\:f(x)=-0.020724x^{2}+0.3692x-0.6287
|
f(x,y)=x^3-y^2-3x+12y
|
f(x,y)=x^{3}-y^{2}-3x+12y
|
extreme f(x)=(x^2-12)*e^{-2x}
|
extreme\:f(x)=(x^{2}-12)\cdot\:e^{-2x}
|
minimum f(x)=49x^2-10x+17
|
minimum\:f(x)=49x^{2}-10x+17
|
extreme f(x,y)=x^2+xy+y^2-2x+2y
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-2x+2y
|
parallel y=4x+5
|
parallel\:y=4x+5
|
f(x,y)=-3y^3-3xy+13y-2*2+5x+19
|
f(x,y)=-3y^{3}-3xy+13y-2\cdot\:2+5x+19
|
extreme f(x)=xy+y-16x
|
extreme\:f(x)=xy+y-16x
|
extreme y=x^7e^x+4
|
extreme\:y=x^{7}e^{x}+4
|
extreme f(x)=2x-(2000)/(x^2)
|
extreme\:f(x)=2x-\frac{2000}{x^{2}}
|
f(x,y)=3x^2+2y^2-18x+8y
|
f(x,y)=3x^{2}+2y^{2}-18x+8y
|