minimum f(x)=e^{12x}+e^{-x}
|
minimum\:f(x)=e^{12x}+e^{-x}
|
extreme f(x)=x^4-72x^2+1296
|
extreme\:f(x)=x^{4}-72x^{2}+1296
|
range of f(x)=(x+1\circ x^2-1)
|
range\:f(x)=(x+1\circ\:x^{2}-1)
|
f(x)=xe^{y/x}
|
f(x)=xe^{\frac{y}{x}}
|
extreme (x-2)^3(x+2)
|
extreme\:(x-2)^{3}(x+2)
|
extreme f(x)=(x-9)ln(x-9)
|
extreme\:f(x)=(x-9)\ln(x-9)
|
extreme 42x^3+33x^2-36x+12
|
extreme\:42x^{3}+33x^{2}-36x+12
|
extreme f(x)= 1/9 [(t^3)/3+(3t^2)/2-28t]
|
extreme\:f(x)=\frac{1}{9}[\frac{t^{3}}{3}+\frac{3t^{2}}{2}-28t]
|
f(x,y)=3x+4x^2y^3-5y^2
|
f(x,y)=3x+4x^{2}y^{3}-5y^{2}
|
extreme f(x)=x^2-xy+y^2
|
extreme\:f(x)=x^{2}-xy+y^{2}
|
extreme 5x-3
|
extreme\:5x-3
|
extreme f(x)=-x^3+3x^2+2x
|
extreme\:f(x)=-x^{3}+3x^{2}+2x
|
extreme 8x^6-13x^5
|
extreme\:8x^{6}-13x^{5}
|
midpoint (-3,-5)(4,4)
|
midpoint\:(-3,-5)(4,4)
|
extreme points of-3x^4+24x^3-48x^2
|
extreme\:points\:-3x^{4}+24x^{3}-48x^{2}
|
f(x,y)=xy^2-x^2y
|
f(x,y)=xy^{2}-x^{2}y
|
f(x,y)=y-e-2x^2y
|
f(x,y)=y-e-2x^{2}y
|
extreme f(x)=4x^4+6x^3-x
|
extreme\:f(x)=4x^{4}+6x^{3}-x
|
extreme f(x)=(x^3)/3-5/2 x^2+4x+3
|
extreme\:f(x)=\frac{x^{3}}{3}-\frac{5}{2}x^{2}+4x+3
|
y(I,x)=Ix+2I+2
|
y(I,x)=Ix+2I+2
|
extreme f(x)=0.502994x+2.67066
|
extreme\:f(x)=0.502994x+2.67066
|
minimum 36xy-x^3-8y^3
|
minimum\:36xy-x^{3}-8y^{3}
|
extreme f(x)=\sqrt[5]{x},-1<= x<= 0
|
extreme\:f(x)=\sqrt[5]{x},-1\le\:x\le\:0
|
range of f(x)=-4sqrt(x)
|
range\:f(x)=-4\sqrt{x}
|
extreme f(x)=x^2=4ay
|
extreme\:f(x)=x^{2}=4ay
|
extreme f(x)=((sqrt(5^2-x^2))/x)^2
|
extreme\:f(x)=(\frac{\sqrt{5^{2}-x^{2}}}{x})^{2}
|
extreme 1/(\sqrt[7]{4+x)}
|
extreme\:\frac{1}{\sqrt[7]{4+x}}
|
extreme 3x+1,3<= x<= 6
|
extreme\:3x+1,3\le\:x\le\:6
|
extreme f(x)=-x/(sqrt(x^2+3))
|
extreme\:f(x)=-\frac{x}{\sqrt{x^{2}+3}}
|
extreme f(x)=x^{3/4}-4x^{1/3}
|
extreme\:f(x)=x^{\frac{3}{4}}-4x^{\frac{1}{3}}
|
extreme (20)/r+5pir^2
|
extreme\:\frac{20}{r}+5πr^{2}
|
f(x,y)=-4x^2-3xy-2y^2+66x+19y+5
|
f(x,y)=-4x^{2}-3xy-2y^{2}+66x+19y+5
|
extreme f(x)=x(x+3)^{1/2}
|
extreme\:f(x)=x(x+3)^{\frac{1}{2}}
|
extreme f(x,y)=2x+4y-x^2-y^2-3
|
extreme\:f(x,y)=2x+4y-x^{2}-y^{2}-3
|
range of f(x)= 1/(x^2-9)
|
range\:f(x)=\frac{1}{x^{2}-9}
|
extreme f(x)=4x^3-36x^2+80x
|
extreme\:f(x)=4x^{3}-36x^{2}+80x
|
extreme sqrt(2x)-4
|
extreme\:\sqrt{2x}-4
|
extreme f(x)=4x^3-36x^2+81x
|
extreme\:f(x)=4x^{3}-36x^{2}+81x
|
extreme y=(x-1)^3+3
|
extreme\:y=(x-1)^{3}+3
|
extreme f(x,y)=x2y
|
extreme\:f(x,y)=x2y
|
extreme sqrt(x^2+4x)
|
extreme\:\sqrt{x^{2}+4x}
|
extreme 4x^2-4(8-x)^2
|
extreme\:4x^{2}-4(8-x)^{2}
|
extreme f(x)=3x-10sin(x/3),10<= x<= 38
|
extreme\:f(x)=3x-10\sin(\frac{x}{3}),10^{\circ\:}\le\:x\le\:38^{\circ\:}
|
extreme f(x)=9x+3/x
|
extreme\:f(x)=9x+\frac{3}{x}
|
f(x,y)=x^2+y^2-16x+20y-5
|
f(x,y)=x^{2}+y^{2}-16x+20y-5
|
inverse of h(x)=sqrt(2x-6)
|
inverse\:h(x)=\sqrt{2x-6}
|
extreme f(x)=4x^4
|
extreme\:f(x)=4x^{4}
|
extreme f(x)=(16t)/(t^2+64)
|
extreme\:f(x)=\frac{16t}{t^{2}+64}
|
extreme f(x)=7+x-x^2-ln((x+3)^3)
|
extreme\:f(x)=7+x-x^{2}-\ln((x+3)^{3})
|
extreme (x^2-1)^3,-1<= x<= 3
|
extreme\:(x^{2}-1)^{3},-1\le\:x\le\:3
|
extreme f(x)=6x^2-7x-11
|
extreme\:f(x)=6x^{2}-7x-11
|
f(x,y)=(x^2+xy+y^2-19y+120)
|
f(x,y)=(x^{2}+xy+y^{2}-19y+120)
|
f(x,y)= 1/2 (x^3-x-y^2+3)
|
f(x,y)=\frac{1}{2}(x^{3}-x-y^{2}+3)
|
extreme f(x)=((5x))/((x^2+5))
|
extreme\:f(x)=\frac{(5x)}{(x^{2}+5)}
|
extreme f(x)=ln(x+2)+4/(x+2)
|
extreme\:f(x)=\ln(x+2)+\frac{4}{x+2}
|
extreme f(x)=4x^7
|
extreme\:f(x)=4x^{7}
|
line 4x-3y=4
|
line\:4x-3y=4
|
extreme f(x)=x^6+x/6
|
extreme\:f(x)=x^{6}+\frac{x}{6}
|
extreme y=-57.17x^2+621.83x+1089
|
extreme\:y=-57.17x^{2}+621.83x+1089
|
extreme f(x)=x+((1))/((x)),0.2<= x<= 4
|
extreme\:f(x)=x+\frac{(1)}{(x)},0.2\le\:x\le\:4
|
extreme f(x,y)=ln(1+4x^2+6y^2)
|
extreme\:f(x,y)=\ln(1+4x^{2}+6y^{2})
|
extreme f(x)=x^2-6xy+2y^2+10x+2y-5
|
extreme\:f(x)=x^{2}-6xy+2y^{2}+10x+2y-5
|
extreme 25x
|
extreme\:25x
|
extreme f(x)=x-(250)/x
|
extreme\:f(x)=x-\frac{250}{x}
|
extreme f(x)=-25x^2-25y^2+200x+200y+200
|
extreme\:f(x)=-25x^{2}-25y^{2}+200x+200y+200
|
extreme f(x)=((x+8))/(x^2)
|
extreme\:f(x)=\frac{(x+8)}{x^{2}}
|
inverse of 9x^3+8
|
inverse\:9x^{3}+8
|
extreme-x^3+3x+7
|
extreme\:-x^{3}+3x+7
|
extreme f(x)=((3x))/(x^2-1)
|
extreme\:f(x)=\frac{(3x)}{x^{2}-1}
|
extreme f(x,y)=e^{-5x-5y}
|
extreme\:f(x,y)=e^{-5x-5y}
|
f(x,y)=2y-1/5 xy
|
f(x,y)=2y-\frac{1}{5}xy
|
extreme f(a,p)=x^3+y^3-24xy
|
extreme\:f(a,p)=x^{3}+y^{3}-24xy
|
f(x)=(7x+y)^2+2y+900
|
f(x)=(7x+y)^{2}+2y+900
|
extreme f(x)=\sqrt[7]{x},0<= x<= 2187
|
extreme\:f(x)=\sqrt[7]{x},0\le\:x\le\:2187
|
extreme-2/3 x+1/6
|
extreme\:-\frac{2}{3}x+\frac{1}{6}
|
extreme f(x)= 1/2 x+11
|
extreme\:f(x)=\frac{1}{2}x+11
|
g(x,y)=-x^2+xy-25/512 y^4-7
|
g(x,y)=-x^{2}+xy-\frac{25}{512}y^{4}-7
|
inverse of f(y)=2^x
|
inverse\:f(y)=2^{x}
|
extreme f(x)=2x^3-30x^2+144x-10
|
extreme\:f(x)=2x^{3}-30x^{2}+144x-10
|
extreme f(t)=sqrt(64-x^2),-8<= x<= 8
|
extreme\:f(t)=\sqrt{64-x^{2}},-8\le\:x\le\:8
|
f(x,y)=4x^2-8xy+2y^2
|
f(x,y)=4x^{2}-8xy+2y^{2}
|
extreme f(x)=-3x^2+24x-200
|
extreme\:f(x)=-3x^{2}+24x-200
|
extreme 2-x^4+2x^2-y^2
|
extreme\:2-x^{4}+2x^{2}-y^{2}
|
extreme-x^2+162ln(x)
|
extreme\:-x^{2}+162\ln(x)
|
extreme f(x)=x^4-8x^3+18x^2-16x+40
|
extreme\:f(x)=x^{4}-8x^{3}+18x^{2}-16x+40
|
minimum 3x^2-xy+5y^2
|
minimum\:3x^{2}-xy+5y^{2}
|
extreme f(x)=-x^3-9x^2+4
|
extreme\:f(x)=-x^{3}-9x^{2}+4
|
minimum x^2+1+e^{xy}
|
minimum\:x^{2}+1+e^{xy}
|
inverse of f(x)=(x+2)/(1-x)
|
inverse\:f(x)=\frac{x+2}{1-x}
|
f(x,y)=sqrt(y)+sqrt(81-x^2-y^2)
|
f(x,y)=\sqrt{y}+\sqrt{81-x^{2}-y^{2}}
|
minimum f(x)=(x-2)/(x^2)
|
minimum\:f(x)=\frac{x-2}{x^{2}}
|
extreme f(x)=(2x^3)/3+(7x^2)/2-4x
|
extreme\:f(x)=\frac{2x^{3}}{3}+\frac{7x^{2}}{2}-4x
|
extreme f(x)= 1/3 x^3-1/2 x^2-2x+4/3
|
extreme\:f(x)=\frac{1}{3}x^{3}-\frac{1}{2}x^{2}-2x+\frac{4}{3}
|
minimum-3sin(2x)-4
|
minimum\:-3\sin(2x)-4
|
extreme f(x)=tan(x),-pi/6 <= x<= pi/4
|
extreme\:f(x)=\tan(x),-\frac{π}{6}\le\:x\le\:\frac{π}{4}
|
extreme f(x)=x^4-4x^3-8
|
extreme\:f(x)=x^{4}-4x^{3}-8
|
f(0,0)=x^2-4xy+y^2
|
f(0,0)=x^{2}-4xy+y^{2}
|
extreme f(x)=x^{2/5}(3x+7)
|
extreme\:f(x)=x^{\frac{2}{5}}(3x+7)
|
extreme x^3-2x^2-15x+10[-2.1]
|
extreme\:x^{3}-2x^{2}-15x+10[-2.1]
|
range of \sqrt[3]{x+2}
|
range\:\sqrt[3]{x+2}
|