f(x,y)=(sin(x-y))/(|x|+|y|)
|
f(x,y)=\frac{\sin(x-y)}{\left|x\right|+\left|y\right|}
|
extreme f(x)= x/(5x-4),6<= x<= 7
|
extreme\:f(x)=\frac{x}{5x-4},6\le\:x\le\:7
|
extreme f(x)=4x^{10/3}-10x^{4/3}
|
extreme\:f(x)=4x^{\frac{10}{3}}-10x^{\frac{4}{3}}
|
minimum f(x)=e^{1/x}
|
minimum\:f(x)=e^{\frac{1}{x}}
|
extreme f(x)=y-y^2
|
extreme\:f(x)=y-y^{2}
|
extreme f(x)=4x^2-6xy+5y^2-20x+26y
|
extreme\:f(x)=4x^{2}-6xy+5y^{2}-20x+26y
|
extreme f(x)=-1.6
|
extreme\:f(x)=-1.6
|
inverse of f(x)=x^4-2
|
inverse\:f(x)=x^{4}-2
|
inflection points of x^3-2x^2-4x+6
|
inflection\:points\:x^{3}-2x^{2}-4x+6
|
extreme f(x)=e^{x+y}
|
extreme\:f(x)=e^{x+y}
|
f(x,y)=5x^4-x^2+2y^2
|
f(x,y)=5x^{4}-x^{2}+2y^{2}
|
extreme f(x)=-1/(x^2),0.5<= x<= 2
|
extreme\:f(x)=-\frac{1}{x^{2}},0.5\le\:x\le\:2
|
extreme f(x)=-1/(x^2),0.5<= x<= 4
|
extreme\:f(x)=-\frac{1}{x^{2}},0.5\le\:x\le\:4
|
extreme f(x)=x^2-(54)/(x^2)
|
extreme\:f(x)=x^{2}-\frac{54}{x^{2}}
|
extreme f(x)=2x^3-4x^2-x+2
|
extreme\:f(x)=2x^{3}-4x^{2}-x+2
|
f(x,y)=x^2-2x+y^2-6y+30
|
f(x,y)=x^{2}-2x+y^{2}-6y+30
|
f(x,y)=e^{yln(x)}
|
f(x,y)=e^{y\ln(x)}
|
extreme f(x)=-1+3x+x^2
|
extreme\:f(x)=-1+3x+x^{2}
|
extreme f(x)=2x-3,0<= x<= 2
|
extreme\:f(x)=2x-3,0\le\:x\le\:2
|
asymptotes of f(x)=(x^2-11x-24)/(x^2-9)
|
asymptotes\:f(x)=\frac{x^{2}-11x-24}{x^{2}-9}
|
f(x,y)=(x^2)/4+y^2
|
f(x,y)=\frac{x^{2}}{4}+y^{2}
|
f(x,y)=x^2+2y^2+2xy+2x+3
|
f(x,y)=x^{2}+2y^{2}+2xy+2x+3
|
x=2r(2t)
|
x=2r(2t)
|
minimum 1/(4x^2)-1/(x^3)
|
minimum\:\frac{1}{4x^{2}}-\frac{1}{x^{3}}
|
minimum-x^2+4xy-5y^2-6x+22y+9
|
minimum\:-x^{2}+4xy-5y^{2}-6x+22y+9
|
y=(5000)/(1+0.01e^{zx)}
|
y=\frac{5000}{1+0.01e^{zx}}
|
extreme f(x)=1x-4/3 x^{3/4},(0,infinity)
|
extreme\:f(x)=1x-\frac{4}{3}x^{\frac{3}{4}},(0,\infty\:)
|
extreme f(x)=(25x)/(x+2)-x
|
extreme\:f(x)=\frac{25x}{x+2}-x
|
extreme y=x^2-12
|
extreme\:y=x^{2}-12
|
range of f(x)=5x^3+6x^2-1
|
range\:f(x)=5x^{3}+6x^{2}-1
|
minimum f(x)=12x^2-180x+464
|
minimum\:f(x)=12x^{2}-180x+464
|
extreme f(x)=-3/16 x^{8/3}+3/4 x^{2/3}
|
extreme\:f(x)=-\frac{3}{16}x^{\frac{8}{3}}+\frac{3}{4}x^{\frac{2}{3}}
|
minimum 2sin(x)-cos(x)-4x
|
minimum\:2\sin(x)-\cos(x)-4x
|
extreme (x^2-3x-10)/(x+6),-2<= x<= 5
|
extreme\:\frac{x^{2}-3x-10}{x+6},-2\le\:x\le\:5
|
extreme f(x)=300x-x^2
|
extreme\:f(x)=300x-x^{2}
|
extreme y=x^3-2x^2+x+1
|
extreme\:y=x^{3}-2x^{2}+x+1
|
extreme f(x)=x(15-43+2x)(43/2-x)
|
extreme\:f(x)=x(15-43+2x)(\frac{43}{2}-x)
|
extreme f(x)=x(-1)^5
|
extreme\:f(x)=x(-1)^{5}
|
inverse of f(x)=(5x-1)/(2x)
|
inverse\:f(x)=\frac{5x-1}{2x}
|
extreme f(x)= 1/3*x^3-1/2 x^2-6x+5
|
extreme\:f(x)=\frac{1}{3}\cdot\:x^{3}-\frac{1}{2}x^{2}-6x+5
|
extreme (e^{2*x})/(6+5*e^{2*x)}
|
extreme\:\frac{e^{2\cdot\:x}}{6+5\cdot\:e^{2\cdot\:x}}
|
f(x,y)=3-(x^2+y^2)
|
f(x,y)=3-(x^{2}+y^{2})
|
extreme f(x)=-2x^2-10x+5
|
extreme\:f(x)=-2x^{2}-10x+5
|
extreme (112)/((x+5)^3)
|
extreme\:\frac{112}{(x+5)^{3}}
|
extreme f(x)= 1/5 x^5-1/2 x^4
|
extreme\:f(x)=\frac{1}{5}x^{5}-\frac{1}{2}x^{4}
|
extreme f(x)=3-x,1<= x<= 3
|
extreme\:f(x)=3-x,1\le\:x\le\:3
|
extreme x^3-3x^2-9x+5,(-2,4)
|
extreme\:x^{3}-3x^{2}-9x+5,(-2,4)
|
extreme f(x)=x^3e^{(4-2x^2)}
|
extreme\:f(x)=x^{3}e^{(4-2x^{2})}
|
extreme x^2-xy+y^2+9x-6y+10
|
extreme\:x^{2}-xy+y^{2}+9x-6y+10
|
domain of f(x)=x^3-3x^2+2
|
domain\:f(x)=x^{3}-3x^{2}+2
|
extreme f(x)=39x^{27/13}-81sqrt(x)
|
extreme\:f(x)=39x^{\frac{27}{13}}-81\sqrt{x}
|
extreme xy^2+x^3y-xy
|
extreme\:xy^{2}+x^{3}y-xy
|
extreme f(x)=x-\sqrt[3]{x},-1<= x<= 4
|
extreme\:f(x)=x-\sqrt[3]{x},-1\le\:x\le\:4
|
extreme 2x^3-27x^2+84x,1<= x<= 8
|
extreme\:2x^{3}-27x^{2}+84x,1\le\:x\le\:8
|
extreme f(x,y)=10^{-4}y-2*10^{-8}y^2
|
extreme\:f(x,y)=10^{-4}y-2\cdot\:10^{-8}y^{2}
|
extreme f(x)=-4x^2+4x-3
|
extreme\:f(x)=-4x^{2}+4x-3
|
extreme f(x)=x^2log_{10}(2x)
|
extreme\:f(x)=x^{2}\log_{10}(2x)
|
extreme f(x)=-[x+2]
|
extreme\:f(x)=-[x+2]
|
minimum f(x)=2x^3+9x^2-24x,-5<= x<= 2
|
minimum\:f(x)=2x^{3}+9x^{2}-24x,-5\le\:x\le\:2
|
extreme 22x^2
|
extreme\:22x^{2}
|
range of f(x)=(x^2-5)/(x^2-9)
|
range\:f(x)=\frac{x^{2}-5}{x^{2}-9}
|
extreme f(x)=(x^3-1)^4,-1<= x<= 2
|
extreme\:f(x)=(x^{3}-1)^{4},-1\le\:x\le\:2
|
extreme f(x)=ye^{(x^2-y^2)}
|
extreme\:f(x)=ye^{(x^{2}-y^{2})}
|
minimum sqrt(x^4-11x^2+36)
|
minimum\:\sqrt{x^{4}-11x^{2}+36}
|
extreme f(x)=8x+6y-1=0
|
extreme\:f(x)=8x+6y-1=0
|
extreme 10xe^{-2x}
|
extreme\:10xe^{-2x}
|
extreme f(x)=(e^x)/(x^3),x>0
|
extreme\:f(x)=\frac{e^{x}}{x^{3}},x>0
|
f(x,y)=sqrt(ln(y-|x|-1))
|
f(x,y)=\sqrt{\ln(y-\left|x\right|-1)}
|
minimum f(x)=x^{2/3}-x^{1/3}
|
minimum\:f(x)=x^{\frac{2}{3}}-x^{\frac{1}{3}}
|
extreme f(x)=7(x^2+1)^2(x-5)^3
|
extreme\:f(x)=7(x^{2}+1)^{2}(x-5)^{3}
|
extreme f(x)=9x^4-4x^3,-3<= x<= 3
|
extreme\:f(x)=9x^{4}-4x^{3},-3\le\:x\le\:3
|
inflection points of 1/4 x^4-4x^3+24x^2
|
inflection\:points\:\frac{1}{4}x^{4}-4x^{3}+24x^{2}
|
extreme f(x)=(x^2-5x+4)(x)
|
extreme\:f(x)=(x^{2}-5x+4)(x)
|
extreme f(x)=2600+2x+0.001x^2
|
extreme\:f(x)=2600+2x+0.001x^{2}
|
extreme f(x)=x^3-12x^2-27x+9(-2)
|
extreme\:f(x)=x^{3}-12x^{2}-27x+9(-2)
|
extreme f(x)=13+7x+x^2
|
extreme\:f(x)=13+7x+x^{2}
|
extreme x^{1/3}(x+4),-27<= x<= 27
|
extreme\:x^{\frac{1}{3}}(x+4),-27\le\:x\le\:27
|
extreme f(x)=1+4x-5y
|
extreme\:f(x)=1+4x-5y
|
extreme f(x)=-2x+5ln(2x),(1,5)
|
extreme\:f(x)=-2x+5\ln(2x),(1,5)
|
extreme f(x)=(x+4)/(x-2)
|
extreme\:f(x)=\frac{x+4}{x-2}
|
g(t)=u(t-2)(t^2+2t-1)
|
g(t)=u(t-2)(t^{2}+2t-1)
|
domain of f(x)=(x-3)/(x^2+15x+56)
|
domain\:f(x)=\frac{x-3}{x^{2}+15x+56}
|
extreme 3-2x
|
extreme\:3-2x
|
extreme f(x,y)=x^3+y^3+3xy^2-18(xy)
|
extreme\:f(x,y)=x^{3}+y^{3}+3xy^{2}-18(xy)
|
extreme 2cos(2x)
|
extreme\:2\cos(2x)
|
extreme 0.01x^3-0.45x^2+2.43x+300
|
extreme\:0.01x^{3}-0.45x^{2}+2.43x+300
|
extreme f(x)=((x^4))/4-2x^3+1
|
extreme\:f(x)=\frac{(x^{4})}{4}-2x^{3}+1
|
extreme sqrt(81-x^2)
|
extreme\:\sqrt{81-x^{2}}
|
extreme f(x)=(3-4x)/(x^2+1),-2<= x<= 4
|
extreme\:f(x)=\frac{3-4x}{x^{2}+1},-2\le\:x\le\:4
|
extreme y=4x+8((20000)/x)
|
extreme\:y=4x+8(\frac{20000}{x})
|
extreme f(x)=-5tan(x)+10x
|
extreme\:f(x)=-5\tan(x)+10x
|
minimum f(x)=(x^2+4)^2
|
minimum\:f(x)=(x^{2}+4)^{2}
|
inverse of log_{9}(x)
|
inverse\:\log_{9}(x)
|
extreme f(x)=9x^2-72x+108
|
extreme\:f(x)=9x^{2}-72x+108
|
extreme x^4+3x^3-6
|
extreme\:x^{4}+3x^{3}-6
|
f(x,y)=x^2-14x+y^2-16y
|
f(x,y)=x^{2}-14x+y^{2}-16y
|
extreme f(x)=x^3-5x+4
|
extreme\:f(x)=x^{3}-5x+4
|
extreme f(x)=8x+4
|
extreme\:f(x)=8x+4
|
extreme f(x)=cos(2(x-60))-1
|
extreme\:f(x)=\cos(2(x-60^{\circ\:}))-1
|
minimum 5315
|
minimum\:5315
|