extreme f(x)=-4*x^2*y+4*x*y^2
|
extreme\:f(x)=-4\cdot\:x^{2}\cdot\:y+4\cdot\:x\cdot\:y^{2}
|
extreme x^3-3x^2-5x-5
|
extreme\:x^{3}-3x^{2}-5x-5
|
extreme f(x)= 1/3 x^3+1/2 x^2-2x+1
|
extreme\:f(x)=\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-2x+1
|
extreme f(x)= 1/3 x^3+1/2 x^2-2x+2
|
extreme\:f(x)=\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-2x+2
|
extreme f(x)=4x^5+25x^4-40x^3-1
|
extreme\:f(x)=4x^{5}+25x^{4}-40x^{3}-1
|
f(x,y)=6xy
|
f(x,y)=6xy
|
extreme f(x)=xsqrt(x^2+25),-6<= x<= 4
|
extreme\:f(x)=x\sqrt{x^{2}+25},-6\le\:x\le\:4
|
extreme (-2.3)(1)
|
extreme\:(-2.3)(1)
|
extreme f(x)=1-x+(((x^3))/(3+x))^{1/2}
|
extreme\:f(x)=1-x+(\frac{(x^{3})}{3+x})^{\frac{1}{2}}
|
extreme f(x)=(x^2+2x-3)/((x+1)^2)
|
extreme\:f(x)=\frac{x^{2}+2x-3}{(x+1)^{2}}
|
domain of 1/6 x^2-1
|
domain\:\frac{1}{6}x^{2}-1
|
extreme ay=(x-9)e^x
|
extreme\:ay=(x-9)e^{x}
|
extreme f(x,y)=sqrt(x^2+y^2+49)
|
extreme\:f(x,y)=\sqrt{x^{2}+y^{2}+49}
|
extreme f(x)=x^2+y^2+4x-16y+8
|
extreme\:f(x)=x^{2}+y^{2}+4x-16y+8
|
extreme f(x)=(4x)/(sqrt(x^2+1))
|
extreme\:f(x)=\frac{4x}{\sqrt{x^{2}+1}}
|
extreme f(x)=((x^2-5))/(x-3)
|
extreme\:f(x)=\frac{(x^{2}-5)}{x-3}
|
extreme f(x)=(7-3)*e^{3x}
|
extreme\:f(x)=(7-3)\cdot\:e^{3x}
|
extreme x^4+2x^3+2x+2
|
extreme\:x^{4}+2x^{3}+2x+2
|
f(x,y)=x^2-y^2-14x+2y+14
|
f(x,y)=x^{2}-y^{2}-14x+2y+14
|
f(x,y)=(2x+3y)(5x+7y)
|
f(x,y)=(2x+3y)(5x+7y)
|
critical points of (x^2)/(x^2-1)
|
critical\:points\:\frac{x^{2}}{x^{2}-1}
|
extreme-2x^4+x^3+6x^2+x-2
|
extreme\:-2x^{4}+x^{3}+6x^{2}+x-2
|
extreme y=x^4-5x^2=x^2(x^2-5)
|
extreme\:y=x^{4}-5x^{2}=x^{2}(x^{2}-5)
|
extreme f(x)= 1/x ,-1<= x<= 1
|
extreme\:f(x)=\frac{1}{x},-1\le\:x\le\:1
|
minimum f(x,y)=x^2-4x+2y^2+4y+7
|
minimum\:f(x,y)=x^{2}-4x+2y^{2}+4y+7
|
extreme y=-2cos(x)
|
extreme\:y=-2\cos(x)
|
extreme f(x,y)=2-x^2-3y^2
|
extreme\:f(x,y)=2-x^{2}-3y^{2}
|
f(xy)=2xy^3-2x^2y
|
f(xy)=2xy^{3}-2x^{2}y
|
extreme f(x)=e^{6x^2+5y^2+7}
|
extreme\:f(x)=e^{6x^{2}+5y^{2}+7}
|
extreme f(x)=x^2+xy+y^2-9x+7
|
extreme\:f(x)=x^{2}+xy+y^{2}-9x+7
|
extreme f(h)=200h^{2/3}s^{1/3}
|
extreme\:f(h)=200h^{\frac{2}{3}}s^{\frac{1}{3}}
|
intercepts of f(x)=y=2x-6
|
intercepts\:f(x)=y=2x-6
|
extreme (3x-2)/(sqrt(2x^2+1))
|
extreme\:\frac{3x-2}{\sqrt{2x^{2}+1}}
|
extreme f(x)=12x^2-16
|
extreme\:f(x)=12x^{2}-16
|
extreme 2x^3-6x^2-210x+7
|
extreme\:2x^{3}-6x^{2}-210x+7
|
extreme f(x,y)=2x^2-8y^2-13
|
extreme\:f(x,y)=2x^{2}-8y^{2}-13
|
extreme f(x)=2x-5x^{2/5}
|
extreme\:f(x)=2x-5x^{\frac{2}{5}}
|
extreme y=-x^2+5,(-2,4)
|
extreme\:y=-x^{2}+5,(-2,4)
|
extreme f(x)=4sin(x)+3cos(x)
|
extreme\:f(x)=4\sin(x)+3\cos(x)
|
extreme f(xy)=x^2+y^2+x+y+xy
|
extreme\:f(xy)=x^{2}+y^{2}+x+y+xy
|
extreme f(x,y)=ye^{x^2-2y^2}
|
extreme\:f(x,y)=ye^{x^{2}-2y^{2}}
|
extreme f(x)=x^2+xy+12y^2-4x+y
|
extreme\:f(x)=x^{2}+xy+12y^{2}-4x+y
|
intercepts of x^2+2
|
intercepts\:x^{2}+2
|
f(x,y)=6x+6xy+y
|
f(x,y)=6x+6xy+y
|
f(x)=(xsqrt(t))
|
f(x)=(x\sqrt{t})
|
extreme-(y-3)(y+5)
|
extreme\:-(y-3)(y+5)
|
extreme f(2)=x^2-4x-4
|
extreme\:f(2)=x^{2}-4x-4
|
extreme f(x,y)=xy-7y-49x+343
|
extreme\:f(x,y)=xy-7y-49x+343
|
extreme x^3+45x^2
|
extreme\:x^{3}+45x^{2}
|
extreme f(x)=x^3-2x^3
|
extreme\:f(x)=x^{3}-2x^{3}
|
extreme 5(2e^{-x}x-e^{-x}x^2)
|
extreme\:5(2e^{-x}x-e^{-x}x^{2})
|
extreme f(x)=(pi/2 ,3.5)(-pi/2 ,-2)
|
extreme\:f(x)=(\frac{π}{2},3.5)(-\frac{π}{2},-2)
|
range of f(x)=|x|-1
|
range\:f(x)=|x|-1
|
extreme y=4x^3-12x
|
extreme\:y=4x^{3}-12x
|
extreme f(x)=(x-1)(x^2-2x-2)
|
extreme\:f(x)=(x-1)(x^{2}-2x-2)
|
f(x,y)=sqrt(400-9x^2-25y^2)
|
f(x,y)=\sqrt{400-9x^{2}-25y^{2}}
|
extreme f(x)=(e^x)/(x^5),x>0
|
extreme\:f(x)=\frac{e^{x}}{x^{5}},x>0
|
extreme f(x)=8+3x^2-x^3
|
extreme\:f(x)=8+3x^{2}-x^{3}
|
extreme f(x)=4x^2-16x+4,0<= x<= 3
|
extreme\:f(x)=4x^{2}-16x+4,0\le\:x\le\:3
|
f(x,y)=2x^2+4x+2y^2+5y
|
f(x,y)=2x^{2}+4x+2y^{2}+5y
|
extreme f(x)=x^3-2^2
|
extreme\:f(x)=x^{3}-2^{2}
|
intercepts of (2x-4)/(x^2+x-2)
|
intercepts\:\frac{2x-4}{x^{2}+x-2}
|
extreme-x^3+5x^2+8x+9
|
extreme\:-x^{3}+5x^{2}+8x+9
|
minimum-2x^2+4x-8
|
minimum\:-2x^{2}+4x-8
|
minimum-2x^2+4x-3
|
minimum\:-2x^{2}+4x-3
|
f(x,y)=x^2+y^2+4x+2y+5
|
f(x,y)=x^{2}+y^{2}+4x+2y+5
|
extreme f(x)=4x^2-6x
|
extreme\:f(x)=4x^{2}-6x
|
extreme y=2x
|
extreme\:y=2x
|
extreme-6x^5+15x^4+20x^3+6
|
extreme\:-6x^{5}+15x^{4}+20x^{3}+6
|
extreme f(x)=3-|t-3|
|
extreme\:f(x)=3-\left|t-3\right|
|
extreme f(x)=6x^2+48x+72
|
extreme\:f(x)=6x^{2}+48x+72
|
range of y=(x^2+x+2)/(x-1)
|
range\:y=\frac{x^{2}+x+2}{x-1}
|
extreme f(x)=-2x^2+x-1,(-3,5)
|
extreme\:f(x)=-2x^{2}+x-1,(-3,5)
|
extreme f(x)=6x^2-48x+72
|
extreme\:f(x)=6x^{2}-48x+72
|
extreme y=-0.05x^2+50x-600
|
extreme\:y=-0.05x^{2}+50x-600
|
extreme g(x)=-4x^3-66x^2-360x+7
|
extreme\:g(x)=-4x^{3}-66x^{2}-360x+7
|
extreme f(x)=4sin(x)cos(x)+12
|
extreme\:f(x)=4\sin(x)\cos(x)+12
|
extreme x(57-x^2)
|
extreme\:x(57-x^{2})
|
extreme f(x)=2x^3+6x^2-18x+7
|
extreme\:f(x)=2x^{3}+6x^{2}-18x+7
|
extreme f(x)=2x^3+6x^2-18x+6
|
extreme\:f(x)=2x^{3}+6x^{2}-18x+6
|
extreme f(x)=2x^3+6x^2-18x+1
|
extreme\:f(x)=2x^{3}+6x^{2}-18x+1
|
inverse of f(x)=x^2+6x-8
|
inverse\:f(x)=x^{2}+6x-8
|
Q(a,b)=7a(a-2b)+a(a-3b)+2a^2-8b^2
|
Q(a,b)=7a(a-2b)+a(a-3b)+2a^{2}-8b^{2}
|
g(y,z)=y^2z^3+piyz
|
g(y,z)=y^{2}z^{3}+πyz
|
extreme f(x)=y^2+xy+3y+2x+3
|
extreme\:f(x)=y^{2}+xy+3y+2x+3
|
extreme f(x)= x/(1+x)
|
extreme\:f(x)=\frac{x}{1+x}
|
extreme f(x)=4x^2-1
|
extreme\:f(x)=4x^{2}-1
|
extreme f(x)=2x^3+3x^2+12
|
extreme\:f(x)=2x^{3}+3x^{2}+12
|
extreme f(x)=2x^2=1
|
extreme\:f(x)=2x^{2}=1
|
extreme ((x-1))/((x+3))
|
extreme\:\frac{(x-1)}{(x+3)}
|
f(x)=2x-y-6
|
f(x)=2x-y-6
|
extreme f(x)=2x^2+3y^2-4x+12y
|
extreme\:f(x)=2x^{2}+3y^{2}-4x+12y
|
domain of f(x)=9.5x^2-x+2.6
|
domain\:f(x)=9.5x^{2}-x+2.6
|
extreme f(x)=(x^3)/3+2x^2-4,-2<= x<= 2
|
extreme\:f(x)=\frac{x^{3}}{3}+2x^{2}-4,-2\le\:x\le\:2
|
extreme f(x)= 1/4 x^4-2x^3-18x^2+216x
|
extreme\:f(x)=\frac{1}{4}x^{4}-2x^{3}-18x^{2}+216x
|
f(x,y)=3x^{(2)}y-8xy^{(3)}+6y^{(3)}
|
f(x,y)=3x^{(2)}y-8xy^{(3)}+6y^{(3)}
|
extreme f(x)=-2xy-8x^2-2y^2-86x+8y+9
|
extreme\:f(x)=-2xy-8x^{2}-2y^{2}-86x+8y+9
|
extreme f(x)=\sqrt[3]{x}+2
|
extreme\:f(x)=\sqrt[3]{x}+2
|
extreme y=2x+sin(4x),-pi/3 <= x<= pi/3
|
extreme\:y=2x+\sin(4x),-\frac{π}{3}\le\:x\le\:\frac{π}{3}
|
minimum x^2+10x+24
|
minimum\:x^{2}+10x+24
|