inverse of f(x)= 7/(x-1)
|
inverse\:f(x)=\frac{7}{x-1}
|
extreme f(x,y)=x-2yg(x,y)=x^2+y^2=25
|
extreme\:f(x,y)=x-2yg(x,y)=x^{2}+y^{2}=25
|
extreme f(x)=x^3+x^2y-y^2-4y
|
extreme\:f(x)=x^{3}+x^{2}y-y^{2}-4y
|
extreme y=x^{4/5}(x-1)
|
extreme\:y=x^{\frac{4}{5}}(x-1)
|
extreme f(x)=((x^2-11))/(x+6)
|
extreme\:f(x)=\frac{(x^{2}-11)}{x+6}
|
extreme (64)/(x^2+6x-7)
|
extreme\:\frac{64}{x^{2}+6x-7}
|
extreme f(x)=6xe^{-x^2}
|
extreme\:f(x)=6xe^{-x^{2}}
|
extreme f(x)=(-2)/(x-3)
|
extreme\:f(x)=\frac{-2}{x-3}
|
extreme y=x^3-12x+3
|
extreme\:y=x^{3}-12x+3
|
extreme y=-x-ln|x|
|
extreme\:y=-x-\ln\left|x\right|
|
y=(x-2)^2
|
y=(x-2)^{2}
|
extreme f(x)=x^3-48x+9
|
extreme\:f(x)=x^{3}-48x+9
|
f(x,y)=x^2y^2+3xy+4x
|
f(x,y)=x^{2}y^{2}+3xy+4x
|
f(x,y)= y/x-ln(x)+1/2 y^2
|
f(x,y)=\frac{y}{x}-\ln(x)+\frac{1}{2}y^{2}
|
extreme sqrt(x^2+2x+5)
|
extreme\:\sqrt{x^{2}+2x+5}
|
extreme f(x)=420t-35t
|
extreme\:f(x)=420t-35t
|
extreme f(x)=|x^2-25|
|
extreme\:f(x)=\left|x^{2}-25\right|
|
extreme (x^2)/(x+2)
|
extreme\:\frac{x^{2}}{x+2}
|
f(x,y)=y((1-1)/((x^2+y^2)))
|
f(x,y)=y(\frac{1-1}{(x^{2}+y^{2})})
|
domain of f(x)=-3x+5
|
domain\:f(x)=-3x+5
|
extreme f(x)=2cos(2x)-2,(0,2pi)
|
extreme\:f(x)=2\cos(2x)-2,(0,2π)
|
extreme y=x^4-6x^2=x^2(x^2-6)
|
extreme\:y=x^{4}-6x^{2}=x^{2}(x^{2}-6)
|
extreme f(x)=5+3x-3x^2
|
extreme\:f(x)=5+3x-3x^{2}
|
extreme x^4-16
|
extreme\:x^{4}-16
|
extreme f(x)=-x^{2/3}(x-4)
|
extreme\:f(x)=-x^{\frac{2}{3}}(x-4)
|
f(x,y)=2x+4y-x^2-y^2-3
|
f(x,y)=2x+4y-x^{2}-y^{2}-3
|
extreme f(x)=-x^{2/3}(x-1)
|
extreme\:f(x)=-x^{\frac{2}{3}}(x-1)
|
extreme f(x)=x^3(x-6)^4
|
extreme\:f(x)=x^{3}(x-6)^{4}
|
extreme f(x)= 2/3 x^3-2x^2+44/3
|
extreme\:f(x)=\frac{2}{3}x^{3}-2x^{2}+\frac{44}{3}
|
extreme f(x)=2x^3-24x^2+72x+7
|
extreme\:f(x)=2x^{3}-24x^{2}+72x+7
|
range of 1/(x^2-3x+2)
|
range\:\frac{1}{x^{2}-3x+2}
|
asymptotes of (16)/(1+7^{-t)}
|
asymptotes\:\frac{16}{1+7^{-t}}
|
extreme y=x^2log_{6}(x)
|
extreme\:y=x^{2}\log_{6}(x)
|
extreme f(x)=xsqrt(x^2+9)
|
extreme\:f(x)=x\sqrt{x^{2}+9}
|
extreme f(x)=(x+1)^2(x-4)^5(x-7)^4
|
extreme\:f(x)=(x+1)^{2}(x-4)^{5}(x-7)^{4}
|
extreme f(x)=-3x^2+12x+6
|
extreme\:f(x)=-3x^{2}+12x+6
|
extreme f(x)=4x+5y
|
extreme\:f(x)=4x+5y
|
extreme f(x)=x^3-30x^2,(-10,30)
|
extreme\:f(x)=x^{3}-30x^{2},(-10,30)
|
extreme f(x)=(x^2+2)/(2x-1)
|
extreme\:f(x)=\frac{x^{2}+2}{2x-1}
|
extreme f(x,y)=|xy|
|
extreme\:f(x,y)=\left|xy\right|
|
extreme f(x)=-2cos(x)-sqrt(3)x
|
extreme\:f(x)=-2\cos(x)-\sqrt{3}x
|
inflection points of-x^3+9x^2-52
|
inflection\:points\:-x^{3}+9x^{2}-52
|
extreme (6x)/(x^2+1)
|
extreme\:\frac{6x}{x^{2}+1}
|
extreme f(x)=-sqrt(1-x^2),0<= x<= 1
|
extreme\:f(x)=-\sqrt{1-x^{2}},0\le\:x\le\:1
|
extreme f(x)=x^2+xy+1/2 y^2-3x+y
|
extreme\:f(x)=x^{2}+xy+\frac{1}{2}y^{2}-3x+y
|
extreme x^2+(400)/x
|
extreme\:x^{2}+\frac{400}{x}
|
extreme 0.05x+20+(125)/x
|
extreme\:0.05x+20+\frac{125}{x}
|
extreme f(x)=(9(t-2)^2)/(t^2)
|
extreme\:f(x)=\frac{9(t-2)^{2}}{t^{2}}
|
extreme xy-5x-5y-x^2-y^2
|
extreme\:xy-5x-5y-x^{2}-y^{2}
|
extreme e^{2x}
|
extreme\:e^{2x}
|
f(x,y)=2x^2+3y^2-4x-12y+13
|
f(x,y)=2x^{2}+3y^{2}-4x-12y+13
|
extreme f(x)=-4x^4+3x^2-15x+5
|
extreme\:f(x)=-4x^{4}+3x^{2}-15x+5
|
range of f(x)=2-3x^2
|
range\:f(x)=2-3x^{2}
|
extreme f(x)=sqrt(x^2+3)-x
|
extreme\:f(x)=\sqrt{x^{2}+3}-x
|
extreme 2x^2-7x-9
|
extreme\:2x^{2}-7x-9
|
extreme 2/3 x^3-39/2 x^2+19x,[0<= x<= 1]
|
extreme\:\frac{2}{3}x^{3}-\frac{39}{2}x^{2}+19x,[0\le\:x\le\:1]
|
extreme (3+x)/(9-x)
|
extreme\:\frac{3+x}{9-x}
|
extreme f(x)=3x^3e^{-x},-1<= x<= 4
|
extreme\:f(x)=3x^{3}e^{-x},-1\le\:x\le\:4
|
extreme 3x^4+12x^3
|
extreme\:3x^{4}+12x^{3}
|
extreme f(x)=9x^{2/3}-x
|
extreme\:f(x)=9x^{\frac{2}{3}}-x
|
f(x,y)=x^2-xy+y^2+2x+2y-4
|
f(x,y)=x^{2}-xy+y^{2}+2x+2y-4
|
extreme x+3,0<x<2
|
extreme\:x+3,0<x<2
|
extreme f(x)=sqrt(x)+sqrt(4-x)
|
extreme\:f(x)=\sqrt{x}+\sqrt{4-x}
|
range of x^2
|
range\:x^{2}
|
extreme f(x)=3x^4-4x^3-12x^2-7
|
extreme\:f(x)=3x^{4}-4x^{3}-12x^{2}-7
|
f(x,y)=e^y(4x^2+2xy+y^2-6x-15)
|
f(x,y)=e^{y}(4x^{2}+2xy+y^{2}-6x-15)
|
minimum 2(x-1)^2+5
|
minimum\:2(x-1)^{2}+5
|
P(xy)=x^3y+x^2y-2xy
|
P(xy)=x^{3}y+x^{2}y-2xy
|
extreme-4sin(2pix)
|
extreme\:-4\sin(2πx)
|
extreme f(x)=20+8x^3-x^4
|
extreme\:f(x)=20+8x^{3}-x^{4}
|
extreme f(x)=-2x^3+15x^2-24x,0<= x<= 5
|
extreme\:f(x)=-2x^{3}+15x^{2}-24x,0\le\:x\le\:5
|
extreme (e^x)/(6+e^x)
|
extreme\:\frac{e^{x}}{6+e^{x}}
|
extreme f(x,y)=3x^2y+y^3-3x^2-3y^2-2
|
extreme\:f(x,y)=3x^{2}y+y^{3}-3x^{2}-3y^{2}-2
|
inverse of f(x)=(x-4)^3+7
|
inverse\:f(x)=(x-4)^{3}+7
|
extreme f(x,y)=4x^2+2y^2+6x+8y+2
|
extreme\:f(x,y)=4x^{2}+2y^{2}+6x+8y+2
|
extreme y=(2x)/(x^2-1)
|
extreme\:y=\frac{2x}{x^{2}-1}
|
extreme x^{2/3}(x-5),-5<= x<= 5
|
extreme\:x^{\frac{2}{3}}(x-5),-5\le\:x\le\:5
|
F(Y,Z)=YZ
|
F(Y,Z)=YZ
|
extreme x^3+2x^2-4x+2
|
extreme\:x^{3}+2x^{2}-4x+2
|
extreme x^3+2x^2-4x+8
|
extreme\:x^{3}+2x^{2}-4x+8
|
extreme f(x)=x^3-x^2-8x+2
|
extreme\:f(x)=x^{3}-x^{2}-8x+2
|
extreme f(x)=x^3-x^2-8x+1
|
extreme\:f(x)=x^{3}-x^{2}-8x+1
|
extreme f(x)=(x+1)^{2/3}
|
extreme\:f(x)=(x+1)^{\frac{2}{3}}
|
extreme y=(x^2+10x+9)/(x^2+2x+1)
|
extreme\:y=\frac{x^{2}+10x+9}{x^{2}+2x+1}
|
inverse of f(x)=((x+16))/(x-14)
|
inverse\:f(x)=\frac{(x+16)}{x-14}
|
extreme f(x)=x^3-x^2-8x-2
|
extreme\:f(x)=x^{3}-x^{2}-8x-2
|
extreme 2xe^{-x}
|
extreme\:2xe^{-x}
|
extreme f(y)=7x-x^2+18
|
extreme\:f(y)=7x-x^{2}+18
|
extreme y=(x^2-9)/(x-5)
|
extreme\:y=\frac{x^{2}-9}{x-5}
|
extreme 4x^3-210x^2+3600x-200
|
extreme\:4x^{3}-210x^{2}+3600x-200
|
f(xy)=x^3-y^2-3x-2y-2xy-3
|
f(xy)=x^{3}-y^{2}-3x-2y-2xy-3
|
extreme 1/3 x^3+1/2 x^2-2x
|
extreme\:\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-2x
|
f(x)=12x-x^3-y(y^2+3y-9)+4
|
f(x)=12x-x^{3}-y(y^{2}+3y-9)+4
|
extreme f(x)=-x-x^2(1+sqrt(2))
|
extreme\:f(x)=-x-x^{2}(1+\sqrt{2})
|
extreme f(x)=sqrt(64-x^2)
|
extreme\:f(x)=\sqrt{64-x^{2}}
|
domain of f(x)= 1/(5x+2)
|
domain\:f(x)=\frac{1}{5x+2}
|
extreme f(x,y)=xy-4y-16x+64
|
extreme\:f(x,y)=xy-4y-16x+64
|
minimum y=cos(x)
|
minimum\:y=\cos(x)
|
extreme 2x^2+24x-6
|
extreme\:2x^{2}+24x-6
|
f(x,y)=((((1-x))/x)y)
|
f(x,y)=((\frac{(1-x)}{x})y)
|