extreme f(x)=2x^3+3x^2-12x+6
|
extreme\:f(x)=2x^{3}+3x^{2}-12x+6
|
extreme f(x)=x^{4/3},-1<= x<= 8
|
extreme\:f(x)=x^{\frac{4}{3}},-1\le\:x\le\:8
|
f(x,y)=(x+y-1)*xy
|
f(x,y)=(x+y-1)\cdot\:xy
|
extreme f(x)=x^3+x^2-5x-4
|
extreme\:f(x)=x^{3}+x^{2}-5x-4
|
extreme f(x)=xsqrt(36-x^2),-6<= x<= 6
|
extreme\:f(x)=x\sqrt{36-x^{2}},-6\le\:x\le\:6
|
critical points of (5(x^2-1))/(x^2-4)
|
critical\:points\:\frac{5(x^{2}-1)}{x^{2}-4}
|
f(x)=5xy
|
f(x)=5xy
|
extreme f(x,y)=x^3+y^3-192x-300y+2
|
extreme\:f(x,y)=x^{3}+y^{3}-192x-300y+2
|
extreme f(x)=(4x^2)/(x^2+3)
|
extreme\:f(x)=\frac{4x^{2}}{x^{2}+3}
|
extreme y=2x^3-3x^2-12x+1
|
extreme\:y=2x^{3}-3x^{2}-12x+1
|
extreme f(x)=7x^{2/3}
|
extreme\:f(x)=7x^{\frac{2}{3}}
|
extreme x^4+x^3-3x^2+1
|
extreme\:x^{4}+x^{3}-3x^{2}+1
|
extreme f(x)=-(x-1)^2+4
|
extreme\:f(x)=-(x-1)^{2}+4
|
extreme f(x)=x^3-7x+1
|
extreme\:f(x)=x^{3}-7x+1
|
extreme f(x)=x^3-7x+6
|
extreme\:f(x)=x^{3}-7x+6
|
extreme f(x)=2x^3-6x^2-48x+9
|
extreme\:f(x)=2x^{3}-6x^{2}-48x+9
|
range of f(x)=(x^3+4x^2-2)/(x^2-9)
|
range\:f(x)=\frac{x^{3}+4x^{2}-2}{x^{2}-9}
|
extreme y=x^2-3x+2
|
extreme\:y=x^{2}-3x+2
|
extreme f(x)=-2/5 x^{5/2}+32x^{1/2}
|
extreme\:f(x)=-\frac{2}{5}x^{\frac{5}{2}}+32x^{\frac{1}{2}}
|
extreme f(x)=((-2x)/(x^2+7))
|
extreme\:f(x)=(\frac{-2x}{x^{2}+7})
|
f(x,y)=(x^2-8x)(y^2-3y)
|
f(x,y)=(x^{2}-8x)(y^{2}-3y)
|
extreme F(x)=(5x^2)/(x^2-16)
|
extreme\:F(x)=\frac{5x^{2}}{x^{2}-16}
|
f(x)=(In(x^2-1))/(x^2-1)
|
f(x)=\frac{In(x^{2}-1)}{x^{2}-1}
|
extreme 16(-1/(x^2)-2/(x^3))
|
extreme\:16(-\frac{1}{x^{2}}-\frac{2}{x^{3}})
|
extreme f(x,y)=x^2+xy+y^2-22y+161
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-22y+161
|
extreme f(x)=3x^6-7x^5
|
extreme\:f(x)=3x^{6}-7x^{5}
|
inflection points of x^3-5
|
inflection\:points\:x^{3}-5
|
extreme f(x,y)=e^{x^2+3y^2+15}
|
extreme\:f(x,y)=e^{x^{2}+3y^{2}+15}
|
extreme g(x)=x^3-2x^2-4x+8
|
extreme\:g(x)=x^{3}-2x^{2}-4x+8
|
extreme f(x)=x^3+6x^2-63x+5,-8<= x<= 0
|
extreme\:f(x)=x^{3}+6x^{2}-63x+5,-8\le\:x\le\:0
|
extreme f(x)=3x^2-6x+24
|
extreme\:f(x)=3x^{2}-6x+24
|
extreme f(x)=(9x^2+4x+5)(9y^2+6y+6)
|
extreme\:f(x)=(9x^{2}+4x+5)(9y^{2}+6y+6)
|
extreme f(x)=(4860)/x+12x+709407
|
extreme\:f(x)=\frac{4860}{x}+12x+709407
|
extreme f(x)=x^3+6x^2-63x+12,-5<= x<= 4
|
extreme\:f(x)=x^{3}+6x^{2}-63x+12,-5\le\:x\le\:4
|
extreme 9sin(x)+9cos(x),0<= x<= 2pi
|
extreme\:9\sin(x)+9\cos(x),0\le\:x\le\:2π
|
extreme f(x)=sin(2θ)
|
extreme\:f(x)=\sin(2θ)
|
extreme f(x)=-0.001x^2+4.2x-10
|
extreme\:f(x)=-0.001x^{2}+4.2x-10
|
inverse of f(x)=sqrt(2x+5)
|
inverse\:f(x)=\sqrt{2x+5}
|
inflection points of f(x)=6x^4+32x^3
|
inflection\:points\:f(x)=6x^{4}+32x^{3}
|
f(x,y)=xy-x^2-y+1
|
f(x,y)=xy-x^{2}-y+1
|
extreme f(x,y)=x^2+xy+y^2+6x-3y+4
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+6x-3y+4
|
extreme x^3-3x^2+3x-1
|
extreme\:x^{3}-3x^{2}+3x-1
|
extreme f(x)=5x+9x^{-1}
|
extreme\:f(x)=5x+9x^{-1}
|
P(x,y)=2x^2-xy-3y^2
|
P(x,y)=2x^{2}-xy-3y^{2}
|
extreme x^4+(1-x)^4+10x^2(1-x)^2
|
extreme\:x^{4}+(1-x)^{4}+10x^{2}(1-x)^{2}
|
extreme-7x+6
|
extreme\:-7x+6
|
f(x,y)=2x^3-3y^4+2xy
|
f(x,y)=2x^{3}-3y^{4}+2xy
|
extreme f(x)=cos(x)-5x
|
extreme\:f(x)=\cos(x)-5x
|
extreme y=(x^2)/(x-1)
|
extreme\:y=\frac{x^{2}}{x-1}
|
extreme f(x)=cos(x)-6x
|
extreme\:f(x)=\cos(x)-6x
|
extreme e^{1/x}
|
extreme\:e^{\frac{1}{x}}
|
extreme x+sin(2x)
|
extreme\:x+\sin(2x)
|
extreme f(x)=x^2e^{13x}
|
extreme\:f(x)=x^{2}e^{13x}
|
extreme f(x)=-2x(x-4)
|
extreme\:f(x)=-2x(x-4)
|
extreme f(x)=-x^3+27x-49
|
extreme\:f(x)=-x^{3}+27x-49
|
extreme f(x)=2sqrt(x)-4x,x>0
|
extreme\:f(x)=2\sqrt{x}-4x,x>0
|
extreme f(x)=e^{x^2-4},(-2,2)
|
extreme\:f(x)=e^{x^{2}-4},(-2,2)
|
inverse of f(x)=5x^5
|
inverse\:f(x)=5x^{5}
|
f(x,y)= y/x+x^2y+6x
|
f(x,y)=\frac{y}{x}+x^{2}y+6x
|
extreme f(x)=y=-3/(2x+2)
|
extreme\:f(x)=y=-\frac{3}{2x+2}
|
extreme 4sin(x)+5cos(x)
|
extreme\:4\sin(x)+5\cos(x)
|
minimum f(x)=-3x^2+24x-5
|
minimum\:f(x)=-3x^{2}+24x-5
|
f(x)=x^2+y^2-9
|
f(x)=x^{2}+y^{2}-9
|
f(x*y)=ln(2x+2y)
|
f(x\cdot\:y)=\ln(2x+2y)
|
extreme f(x,y)=xy(2+x)(y-3)
|
extreme\:f(x,y)=xy(2+x)(y-3)
|
extreme f(x)=2-sqrt(x)
|
extreme\:f(x)=2-\sqrt{x}
|
extreme f(x)=3x^3-30x^2+75x+6,0<= x<= 9
|
extreme\:f(x)=3x^{3}-30x^{2}+75x+6,0\le\:x\le\:9
|
extreme xe^{-4x^2}
|
extreme\:xe^{-4x^{2}}
|
extreme f(x)=3sin(x)+3cos(x),(0,2pi)
|
extreme\:f(x)=3\sin(x)+3\cos(x),(0,2π)
|
extreme f(x)=-5/2 sin(1/2 x)
|
extreme\:f(x)=-\frac{5}{2}\sin(\frac{1}{2}x)
|
extreme f(x)=x^2+7x-1
|
extreme\:f(x)=x^{2}+7x-1
|
extreme f(x)=-3x^3+3x^2-x-5
|
extreme\:f(x)=-3x^{3}+3x^{2}-x-5
|
extreme 5x^{2/3}-x^{1/3}
|
extreme\:5x^{\frac{2}{3}}-x^{\frac{1}{3}}
|
extreme 2sin^2(x)
|
extreme\:2\sin^{2}(x)
|
f(x,y)=x^2+x-3xy+y^3-5
|
f(x,y)=x^{2}+x-3xy+y^{3}-5
|
extreme y=5-2x^2,-4<= x<= 2
|
extreme\:y=5-2x^{2},-4\le\:x\le\:2
|
extreme f(x)=x^3-7/2 x^2+2x-5
|
extreme\:f(x)=x^{3}-\frac{7}{2}x^{2}+2x-5
|
extreme f(x)=(t^2-4)^3
|
extreme\:f(x)=(t^{2}-4)^{3}
|
extreme x/(x^2+16),0<= x<= 8
|
extreme\:\frac{x}{x^{2}+16},0\le\:x\le\:8
|
extreme f(x)=((x^2-5x+2))/(x-5)
|
extreme\:f(x)=\frac{(x^{2}-5x+2)}{x-5}
|
extreme (8-x)(x+1)^2
|
extreme\:(8-x)(x+1)^{2}
|
extreme f(x)=x^3+11x+10
|
extreme\:f(x)=x^{3}+11x+10
|
extreme f(x)=3sin(x),0<= x<= 2pi
|
extreme\:f(x)=3\sin(x),0\le\:x\le\:2π
|
extreme (e^x)/(8+e^x)
|
extreme\:\frac{e^{x}}{8+e^{x}}
|
extreme f(x)=(-3x)/(x^2+3)
|
extreme\:f(x)=\frac{-3x}{x^{2}+3}
|
extreme f(x)=2x+(32)/x
|
extreme\:f(x)=2x+\frac{32}{x}
|
extreme f(x)=(x^3)/3-x^2-3x-1,-7<= x<= 7
|
extreme\:f(x)=\frac{x^{3}}{3}-x^{2}-3x-1,-7\le\:x\le\:7
|
extreme y=(x-4)^4(x+3)^3
|
extreme\:y=(x-4)^{4}(x+3)^{3}
|
inverse of (x-1)/x
|
inverse\:\frac{x-1}{x}
|
extreme-x^3+6x^2
|
extreme\:-x^{3}+6x^{2}
|
extreme f(x)=6x^3-21x^2+36x-5
|
extreme\:f(x)=6x^{3}-21x^{2}+36x-5
|
extreme f(x)= 1/3 x^3-2x^2-5x-10
|
extreme\:f(x)=\frac{1}{3}x^{3}-2x^{2}-5x-10
|
extreme f(x)=3-x^{4/5}
|
extreme\:f(x)=3-x^{\frac{4}{5}}
|
extreme f(x)=2xe^{-y}
|
extreme\:f(x)=2xe^{-y}
|
minimum 2x-(360)/(x^2)
|
minimum\:2x-\frac{360}{x^{2}}
|
extreme f(x)=8(1+1/x+1/(x^2))
|
extreme\:f(x)=8(1+\frac{1}{x}+\frac{1}{x^{2}})
|
extreme f(x)=2x^3+6x^2-48x+7
|
extreme\:f(x)=2x^{3}+6x^{2}-48x+7
|
extreme x^4-5x^2
|
extreme\:x^{4}-5x^{2}
|
line (-4,-7)(-4,-6)
|
line\:(-4,-7)(-4,-6)
|
extreme f(x)=y^3-x^3-2xy+6
|
extreme\:f(x)=y^{3}-x^{3}-2xy+6
|