Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of y=(x^3)/((x-1)^2)
range\:y=\frac{x^{3}}{(x-1)^{2}}
parallel x=-9x,(6,-1)
parallel\:x=-9x,(6,-1)
midpoint (-3/2 ,-3),(2, 7/2)
midpoint\:(-\frac{3}{2},-3),(2,\frac{7}{2})
distance (0,1),(2,0)
distance\:(0,1),(2,0)
slope of 2/3
slope\:\frac{2}{3}
extreme f(x)=1-x^2
extreme\:f(x)=1-x^{2}
domain of f(x)=(30x^2)/((4-5x^3)^3)
domain\:f(x)=\frac{30x^{2}}{(4-5x^{3})^{3}}
domain of f(x)=(sqrt(x+2))/(x-2)
domain\:f(x)=\frac{\sqrt{x+2}}{x-2}
critical f(x)=(10(t-4))/((t+2)^4)
critical\:f(x)=\frac{10(t-4)}{(t+2)^{4}}
range of 10-sqrt(x+100)
range\:10-\sqrt{x+100}
inflection 5x^3-15x
inflection\:5x^{3}-15x
critical 2x^2+4x-3
critical\:2x^{2}+4x-3
domain of 2(x+1)^2-3
domain\:2(x+1)^{2}-3
\begin{pmatrix}5&\end{pmatrix}\begin{pmatrix}&4\end{pmatrix}
domain of (9x+6)/(x-1)
domain\:\frac{9x+6}{x-1}
inverse of f(x)=sin((1-9x)/x)
inverse\:f(x)=\sin(\frac{1-9x}{x})
domain of f(x)=sqrt(5x^2-7x-6)
domain\:f(x)=\sqrt{5x^{2}-7x-6}
intercepts of f(x)=-6x+5y=9
intercepts\:f(x)=-6x+5y=9
inverse of f(x)=x^3+2
inverse\:f(x)=x^{3}+2
asymptotes of f(x)=(-3x-9)/(5x+15)
asymptotes\:f(x)=\frac{-3x-9}{5x+15}
range of f(x)=2x^2-6x+11
range\:f(x)=2x^{2}-6x+11
domain of f(x)=ln(x-3)
domain\:f(x)=\ln(x-3)
intercepts of f(x)=4x^2-16x+13
intercepts\:f(x)=4x^{2}-16x+13
inverse of f(x)= 4/3 x-8/3
inverse\:f(x)=\frac{4}{3}x-\frac{8}{3}
perpendicular-1
perpendicular\:-1
domain of y=5x+2
domain\:y=5x+2
domain of (6x-6)/(x+2)
domain\:\frac{6x-6}{x+2}
asymptotes of f(x)=(6+x^4)/(x^2-x^4)
asymptotes\:f(x)=\frac{6+x^{4}}{x^{2}-x^{4}}
shift cos(x-4)
shift\:\cos(x-4)
domain of 3/(x+1)
domain\:\frac{3}{x+1}
critical x^2+1
critical\:x^{2}+1
inverse of f(x)=csc(x)
inverse\:f(x)=\csc(x)
inflection 3cos(x)
inflection\:3\cos(x)
extreme f(x)=x^3-5x
extreme\:f(x)=x^{3}-5x
domain of f(x)= 3/x+6
domain\:f(x)=\frac{3}{x}+6
domain of x^2-4x+5
domain\:x^{2}-4x+5
intercepts of f(x)=3x^2+6x-4
intercepts\:f(x)=3x^{2}+6x-4
domain of f(x)=sqrt(3-3e^x)
domain\:f(x)=\sqrt{3-3e^{x}}
inflection x^3-3x^2
inflection\:x^{3}-3x^{2}
inverse of f(x)=(2x-1)/(-x+5)+1=-2x-7
inverse\:f(x)=\frac{2x-1}{-x+5}+1=-2x-7
inflection (x^3-1)/(x^2)
inflection\:\frac{x^{3}-1}{x^{2}}
asymptotes of f(x)=(8x^2+26x-7)/(4x-1)
asymptotes\:f(x)=\frac{8x^{2}+26x-7}{4x-1}
extreme f(x)= x/(4+x^2)
extreme\:f(x)=\frac{x}{4+x^{2}}
intercepts of f(x)=x^4-2x^2+1
intercepts\:f(x)=x^{4}-2x^{2}+1
domain of f(x)=((x^2+4))/(x^2-9)
domain\:f(x)=\frac{(x^{2}+4)}{x^{2}-9}
parity sec(x)csc(x)
parity\:\sec(x)\csc(x)
parity f(x)=3x-x^3
parity\:f(x)=3x-x^{3}
inverse of f(x)=log_{6}(x+7)
inverse\:f(x)=\log_{6}(x+7)
parity f(x)=x^3+2x^2
parity\:f(x)=x^{3}+2x^{2}
asymptotes of 1/(x+2)
asymptotes\:\frac{1}{x+2}
inverse of f(x)= x/(9x-4)
inverse\:f(x)=\frac{x}{9x-4}
inverse of f(x)=-3x+5
inverse\:f(x)=-3x+5
line m=-5,(-1,7)
line\:m=-5,(-1,7)
domain of f(x)=sqrt(3+4x)
domain\:f(x)=\sqrt{3+4x}
f(x)=x^2+4x
f(x)=x^{2}+4x
inverse of f(x)=3-7x
inverse\:f(x)=3-7x
intercepts of f(x)=x^2-5x-14
intercepts\:f(x)=x^{2}-5x-14
asymptotes of f(x)=5-9/x
asymptotes\:f(x)=5-\frac{9}{x}
domain of (3x)/(x-4)
domain\:\frac{3x}{x-4}
intercepts of g(x)=(-8x^2+16)/(2x+2)
intercepts\:g(x)=\frac{-8x^{2}+16}{2x+2}
slope ofintercept-2y+5x=6
slopeintercept\:-2y+5x=6
line (2,-3),(4,0)
line\:(2,-3),(4,0)
domain of (x-1)^2-2
domain\:(x-1)^{2}-2
critical (x^2+3x-10)/(x-2)
critical\:\frac{x^{2}+3x-10}{x-2}
asymptotes of f(x)=(x-1)/(x^2-1)
asymptotes\:f(x)=\frac{x-1}{x^{2}-1}
domain of f(x)=16x^3
domain\:f(x)=16x^{3}
range of (xlog_{2}(x))/(x^22^x)
range\:\frac{x\log_{2}(x)}{x^{2}2^{x}}
domain of (4x^2)/(x+1)
domain\:\frac{4x^{2}}{x+1}
asymptotes of f(x)=(2x^2-x-3)/(x^2-1)
asymptotes\:f(x)=\frac{2x^{2}-x-3}{x^{2}-1}
parity f(x)= 1/(x+2)
parity\:f(x)=\frac{1}{x+2}
range of g(x)=x-6
range\:g(x)=x-6
domain of (1-sqrt(x))^2
domain\:(1-\sqrt{x})^{2}
midpoint (2,4),(-4,-3)
midpoint\:(2,4),(-4,-3)
range of f(x)=x-3
range\:f(x)=x-3
domain of f(x)=sqrt(3-3x)
domain\:f(x)=\sqrt{3-3x}
parity (x+5)^2
parity\:(x+5)^{2}
asymptotes of e^x(2x^2+2x)
asymptotes\:e^{x}(2x^{2}+2x)
range of f(x)=sqrt(x^2-5x+6)
range\:f(x)=\sqrt{x^{2}-5x+6}
extreme f(x)=cos^2(x)
extreme\:f(x)=\cos^{2}(x)
range of f(x)=sqrt(x)+2
range\:f(x)=\sqrt{x}+2
distance (-3,-1/2),(-4,-2)
distance\:(-3,-\frac{1}{2}),(-4,-2)
intercepts of f(x)=y^2-3
intercepts\:f(x)=y^{2}-3
range of (4x)/(x^3-4x)
range\:\frac{4x}{x^{3}-4x}
slope ofintercept 2x-y+4=0
slopeintercept\:2x-y+4=0
domain of f(x)=sqrt(x+1)-(sqrt(7-x))/x
domain\:f(x)=\sqrt{x+1}-\frac{\sqrt{7-x}}{x}
domain of f(x)= 3/(sqrt(x-2))
domain\:f(x)=\frac{3}{\sqrt{x-2}}
domain of (1-4x)/(2+x)
domain\:\frac{1-4x}{2+x}
distance (13,2),(7,10)
distance\:(13,2),(7,10)
domain of sqrt(t+1)
domain\:\sqrt{t+1}
y=2x+1
y=2x+1
line f(x)=50x+200
line\:f(x)=50x+200
critical f(x)=(4x+8)/(x^2+x+1)
critical\:f(x)=\frac{4x+8}{x^{2}+x+1}
range of f(x)=2+sqrt(9+x^2)
range\:f(x)=2+\sqrt{9+x^{2}}
asymptotes of (2x^2+4x+2)/(x^2-1)
asymptotes\:\frac{2x^{2}+4x+2}{x^{2}-1}
parity 4csc^4(x)cot^6(x)dx
parity\:4\csc^{4}(x)\cot^{6}(x)dx
asymptotes of f(x)=(4x+1)/((x+3)(x-5))
asymptotes\:f(x)=\frac{4x+1}{(x+3)(x-5)}
domain of f(x)= 1/(\sqrt[7]{4+x)}
domain\:f(x)=\frac{1}{\sqrt[7]{4+x}}
slope ofintercept 5x+3y=3
slopeintercept\:5x+3y=3
domain of y=(x^2+x+1)/(2x^2+1)
domain\:y=\frac{x^{2}+x+1}{2x^{2}+1}
domain of 1/x-3x
domain\:\frac{1}{x}-3x
1
..
375
376
377
378
379
..
1324