extreme 170+8x^3+x^4
|
extreme\:170+8x^{3}+x^{4}
|
y=4-x^2-z^2
|
y=4-x^{2}-z^{2}
|
extreme f(x)=-4x^3+3x^2+18
|
extreme\:f(x)=-4x^{3}+3x^{2}+18
|
extreme f(x)=2x^{2/3},-27<= x<= 27
|
extreme\:f(x)=2x^{\frac{2}{3}},-27\le\:x\le\:27
|
asymptotes of f(x)=0
|
asymptotes\:f(x)=0
|
extreme f(x)=(x^2-1)^3,-1<= x<= 5
|
extreme\:f(x)=(x^{2}-1)^{3},-1\le\:x\le\:5
|
minimum f(x)= 1/3 x^3-9x^2+72x+2
|
minimum\:f(x)=\frac{1}{3}x^{3}-9x^{2}+72x+2
|
F(x,y)=x^3y^2+x^2y+2xy^2+2y
|
F(x,y)=x^{3}y^{2}+x^{2}y+2xy^{2}+2y
|
extreme f(x)= 1/x+x
|
extreme\:f(x)=\frac{1}{x}+x
|
extreme f(x)=(x/5)^5-((4x)/4)^4+5
|
extreme\:f(x)=(\frac{x}{5})^{5}-(\frac{4x}{4})^{4}+5
|
extreme f(x)=x^{1/3}-x^{-2/3}
|
extreme\:f(x)=x^{\frac{1}{3}}-x^{-\frac{2}{3}}
|
extreme f(x)=2x+4y
|
extreme\:f(x)=2x+4y
|
extreme f(x)=x^4-2x^3-11x^2+12x+36
|
extreme\:f(x)=x^{4}-2x^{3}-11x^{2}+12x+36
|
minimum y=9x^3-7
|
minimum\:y=9x^{3}-7
|
extreme x^3-12x^2+45x+8
|
extreme\:x^{3}-12x^{2}+45x+8
|
domain of f(x)=(x-2)/(x-1)
|
domain\:f(x)=\frac{x-2}{x-1}
|
extreme |x^4-4x^2-2|,-2<= x<= 2
|
extreme\:\left|x^{4}-4x^{2}-2\right|,-2\le\:x\le\:2
|
f(x,y)=(y^2-x)/(x^2+1)
|
f(x,y)=\frac{y^{2}-x}{x^{2}+1}
|
extreme f(x)=(8x)/(x^2+1)
|
extreme\:f(x)=\frac{8x}{x^{2}+1}
|
extreme f(x)= 1/4 x^4+x^3-2
|
extreme\:f(x)=\frac{1}{4}x^{4}+x^{3}-2
|
extreme f(x)=(1/x)+2+(4/(1-x))
|
extreme\:f(x)=(\frac{1}{x})+2+(\frac{4}{1-x})
|
extreme f(x)=2x^3-x^2-20x+10
|
extreme\:f(x)=2x^{3}-x^{2}-20x+10
|
extreme f(x)=x^3*e^{-2x^2}
|
extreme\:f(x)=x^{3}\cdot\:e^{-2x^{2}}
|
f(x,y)=x^2+5xy+y^2-2x+y-6
|
f(x,y)=x^{2}+5xy+y^{2}-2x+y-6
|
extreme f(x)=7t+7cot(t/2)
|
extreme\:f(x)=7t+7\cot(\frac{t}{2})
|
line 8x+y=3
|
line\:8x+y=3
|
extreme f(x)=2x^3+3x^2-9x-9
|
extreme\:f(x)=2x^{3}+3x^{2}-9x-9
|
extreme f(x)= 1/4 x^4-x,-4<= x<= 4
|
extreme\:f(x)=\frac{1}{4}x^{4}-x,-4\le\:x\le\:4
|
minimum 12
|
minimum\:12
|
extreme f(x)=(x^2+10)(100-x^2)
|
extreme\:f(x)=(x^{2}+10)(100-x^{2})
|
minimum 21
|
minimum\:21
|
minimum 20
|
minimum\:20
|
extreme f(x)=3^2\sqrt[3]{x^2}-2x
|
extreme\:f(x)=3^{2}\sqrt[3]{x^{2}}-2x
|
extreme f(x)=6x^{2/3}-x,0<= x<= 216
|
extreme\:f(x)=6x^{\frac{2}{3}}-x,0\le\:x\le\:216
|
domain of f(x)=(x/(x+5))/(x/(x+5)+5)
|
domain\:f(x)=\frac{\frac{x}{x+5}}{\frac{x}{x+5}+5}
|
minimum xsqrt(1-x^2),-1<= x<= 1
|
minimum\:x\sqrt{1-x^{2}},-1\le\:x\le\:1
|
minimum 7+4x^2-x^4
|
minimum\:7+4x^{2}-x^{4}
|
extreme f(x)=1.3te^{-2.9t}
|
extreme\:f(x)=1.3te^{-2.9t}
|
extreme y=x*sqrt(1+x^2)
|
extreme\:y=x\cdot\:\sqrt{1+x^{2}}
|
f(x,y)=(x-1)^3+(y-2)^3-3x-3y
|
f(x,y)=(x-1)^{3}+(y-2)^{3}-3x-3y
|
extreme f(x)=-5x+2ln(2x)
|
extreme\:f(x)=-5x+2\ln(2x)
|
extreme (x+3)/(x^2-2x-15)
|
extreme\:\frac{x+3}{x^{2}-2x-15}
|
f(x,y)=-(x+1)2-(y+x)2
|
f(x,y)=-(x+1)2-(y+x)2
|
extreme f(x)=2x^3-36x^2+192x,3<= x<= 9
|
extreme\:f(x)=2x^{3}-36x^{2}+192x,3\le\:x\le\:9
|
extreme f(x)=2x^2-3x-5
|
extreme\:f(x)=2x^{2}-3x-5
|
inverse of f(x)=3+2ln(x)
|
inverse\:f(x)=3+2\ln(x)
|
inverse of f(x)=(-1)/2 (x+3)
|
inverse\:f(x)=\frac{-1}{2}(x+3)
|
extreme y=4x+4sin(x),0<= x<= 2pi
|
extreme\:y=4x+4\sin(x),0\le\:x\le\:2π
|
extreme f(x)=3x^3-2x^4
|
extreme\:f(x)=3x^{3}-2x^{4}
|
extreme f(x)=340x^2-2040x^3
|
extreme\:f(x)=340x^{2}-2040x^{3}
|
extreme f(x)=x(x-1)
|
extreme\:f(x)=x(x-1)
|
extreme f(x)=-6sin^2(x)
|
extreme\:f(x)=-6\sin^{2}(x)
|
extreme f(x)=x^4-72x^2+3
|
extreme\:f(x)=x^{4}-72x^{2}+3
|
extreme f(x)=x^4-72x^2+7
|
extreme\:f(x)=x^{4}-72x^{2}+7
|
f(x,y)=x^2+6x+y^3-6y^2+10
|
f(x,y)=x^{2}+6x+y^{3}-6y^{2}+10
|
extreme f(x)=4x+324x,0<x<infinity
|
extreme\:f(x)=4x+324x,0<x<\infty\:
|
extreme f(x)=2x^4+3x^3-7x^2-2x-24
|
extreme\:f(x)=2x^{4}+3x^{3}-7x^{2}-2x-24
|
domain of f(x)=sqrt(-x+5)-2
|
domain\:f(x)=\sqrt{-x+5}-2
|
extreme f(x)=|x^2-9|,-9/2 <= x<= 6
|
extreme\:f(x)=\left|x^{2}-9\right|,-\frac{9}{2}\le\:x\le\:6
|
extreme x^2e^{-6x}
|
extreme\:x^{2}e^{-6x}
|
f(x)= 7/3 x-5/2 y
|
f(x)=\frac{7}{3}x-\frac{5}{2}y
|
extreme f(x)=(x-1)^3+4
|
extreme\:f(x)=(x-1)^{3}+4
|
extreme f(x)=-2x^4+x^3+6x^2+2x-5
|
extreme\:f(x)=-2x^{4}+x^{3}+6x^{2}+2x-5
|
extreme f(x)=x^3-3x^2-24x-2
|
extreme\:f(x)=x^{3}-3x^{2}-24x-2
|
extreme f(x)=-2x^3-9x^2
|
extreme\:f(x)=-2x^{3}-9x^{2}
|
extreme f(x)=sin(x)+cos(2x)
|
extreme\:f(x)=\sin(x)+\cos(2x)
|
extreme f(x)= 1/2
|
extreme\:f(x)=\frac{1}{2}
|
extreme (x^2+x-2)/(x^2-3x-4)
|
extreme\:\frac{x^{2}+x-2}{x^{2}-3x-4}
|
domain of f(x)= 1/(sqrt(3-2x))
|
domain\:f(x)=\frac{1}{\sqrt{3-2x}}
|
extreme f(x)=x^3-x^2y^2-y^4
|
extreme\:f(x)=x^{3}-x^{2}y^{2}-y^{4}
|
extreme f(x)=xsqrt(25-x^2),-1<= x<= 5
|
extreme\:f(x)=x\sqrt{25-x^{2}},-1\le\:x\le\:5
|
extreme f(x)=4x^4-2x^3
|
extreme\:f(x)=4x^{4}-2x^{3}
|
g(z)=(2z^3-z+x)z12
|
g(z)=(2z^{3}-z+x)z12
|
extreme-5x^2+8x
|
extreme\:-5x^{2}+8x
|
extreme f(x)=x^4-5x^{3/2}
|
extreme\:f(x)=x^{4}-5x^{\frac{3}{2}}
|
extreme f(x)=-2x^3+45x^2-300x,4<= x<= 11
|
extreme\:f(x)=-2x^{3}+45x^{2}-300x,4\le\:x\le\:11
|
f(x,y)=(-20)/9 x^3-5x^2y+45y
|
f(x,y)=\frac{-20}{9}x^{3}-5x^{2}y+45y
|
domain of (sqrt(x+1))/x
|
domain\:\frac{\sqrt{x+1}}{x}
|
extreme f(x)=(6-x)/2
|
extreme\:f(x)=\frac{6-x}{2}
|
extreme x^2-2x-1
|
extreme\:x^{2}-2x-1
|
extreme f(x)=5x^3-5x^2-5x+9
|
extreme\:f(x)=5x^{3}-5x^{2}-5x+9
|
extreme f(x)=sqrt(408-x)x
|
extreme\:f(x)=\sqrt{408-x}x
|
extreme f(x)=x^2-2x+6
|
extreme\:f(x)=x^{2}-2x+6
|
extreme f(x)=e^{-(x^2+y^2)}(x^2+2y^2)
|
extreme\:f(x)=e^{-(x^{2}+y^{2})}(x^{2}+2y^{2})
|
minimum (X-1)/(X+1)
|
minimum\:\frac{X-1}{X+1}
|
extreme f(x)=-x^2+2x-1
|
extreme\:f(x)=-x^{2}+2x-1
|
extreme f(x)=240x-6x^2
|
extreme\:f(x)=240x-6x^{2}
|
parity f(x)=|x|+x^2
|
parity\:f(x)=|x|+x^{2}
|
extreme x^2-2x+2
|
extreme\:x^{2}-2x+2
|
f(x,y)=x^3+y^3-6x-9y
|
f(x,y)=x^{3}+y^{3}-6x-9y
|
extreme y=6xsqrt(36-x^2)
|
extreme\:y=6x\sqrt{36-x^{2}}
|
S(v,t)=v*2t-v/t*(2t^2)/2
|
S(v,t)=v\cdot\:2t-\frac{v}{t}\cdot\:\frac{2t^{2}}{2}
|
extreme f(x,y)=4x^2-3y^2+3x-4y+6
|
extreme\:f(x,y)=4x^{2}-3y^{2}+3x-4y+6
|
extreme f(x)=5(4x)^x,0.05<= x<= 1
|
extreme\:f(x)=5(4x)^{x},0.05\le\:x\le\:1
|
Q(t)=200+100e^{kt}
|
Q(t)=200+100e^{kt}
|
φ(p,q)=(p-1)*(q-1)
|
φ(p,q)=(p-1)\cdot\:(q-1)
|
extreme 4xy+x^4+y^4
|
extreme\:4xy+x^{4}+y^{4}
|
extreme y=x^3-3x^2-9x+1
|
extreme\:y=x^{3}-3x^{2}-9x+1
|
perpendicular y=3x,\at (1,3)
|
perpendicular\:y=3x,\at\:(1,3)
|
f(x,y)=x(2y^2+x^2)-4(x^2+y^2)+e^b
|
f(x,y)=x(2y^{2}+x^{2})-4(x^{2}+y^{2})+e^{b}
|