extreme f(x)= x/((x^2+9))
|
extreme\:f(x)=\frac{x}{(x^{2}+9)}
|
extreme f(x)=3x^4-4x^3+6
|
extreme\:f(x)=3x^{4}-4x^{3}+6
|
extreme f(x)=x^2-4x-4
|
extreme\:f(x)=x^{2}-4x-4
|
f(x,y)=10-(x^2)/2-(y^2)/2
|
f(x,y)=10-\frac{x^{2}}{2}-\frac{y^{2}}{2}
|
f(x,y)=(xy^2+1)/(x-y+1)
|
f(x,y)=\frac{xy^{2}+1}{x-y+1}
|
inverse of f(x)=-2x+2
|
inverse\:f(x)=-2x+2
|
f(x,y)=x^2+y^2+x+y+xy
|
f(x,y)=x^{2}+y^{2}+x+y+xy
|
f(x,y)=6y^3-5x^3y+3x^2
|
f(x,y)=6y^{3}-5x^{3}y+3x^{2}
|
extreme f(x)=-(x^2)/2+x/3
|
extreme\:f(x)=-\frac{x^{2}}{2}+\frac{x}{3}
|
extreme f(x)=(x-1)^2*(x-3)+2
|
extreme\:f(x)=(x-1)^{2}\cdot\:(x-3)+2
|
extreme f(x)=14x+19x^{14/19}
|
extreme\:f(x)=14x+19x^{\frac{14}{19}}
|
extreme f(x)=3x^2+x-2
|
extreme\:f(x)=3x^{2}+x-2
|
extreme f(x)=sqrt(3)cos(5x)+sin(5x)
|
extreme\:f(x)=\sqrt{3}\cos(5x)+\sin(5x)
|
extreme f(x)=11x_{1}+6x_{1}x_{2}+3x_{2}
|
extreme\:f(x)=11x_{1}+6x_{1}x_{2}+3x_{2}
|
extreme f(x)=9x^4-26x^3-84x^2+72
|
extreme\:f(x)=9x^{4}-26x^{3}-84x^{2}+72
|
asymptotes of f(x)= 4/(x-5)+3
|
asymptotes\:f(x)=\frac{4}{x-5}+3
|
domain of 2x^2+x-1
|
domain\:2x^{2}+x-1
|
f(x,y)=x^3+y^2-3x-4y
|
f(x,y)=x^{3}+y^{2}-3x-4y
|
extreme (x^2-11)/(x+6)
|
extreme\:\frac{x^{2}-11}{x+6}
|
f(x,y)=x^3-12x-3y+y^3
|
f(x,y)=x^{3}-12x-3y+y^{3}
|
extreme f(x)=-x^3+3x+4
|
extreme\:f(x)=-x^{3}+3x+4
|
extreme f(x)=(x^2-8)/(x+3)
|
extreme\:f(x)=\frac{x^{2}-8}{x+3}
|
f(x,y)=3xy+2xy^2
|
f(x,y)=3xy+2xy^{2}
|
extreme 1/3 (x-2.1)^2+7.9
|
extreme\:\frac{1}{3}(x-2.1)^{2}+7.9
|
f(x,y)=120x+120y-xy-x^2-y^2
|
f(x,y)=120x+120y-xy-x^{2}-y^{2}
|
critical points of xsqrt(2x+1)
|
critical\:points\:x\sqrt{2x+1}
|
extreme f(x)=(x+7)^{2/3}
|
extreme\:f(x)=(x+7)^{\frac{2}{3}}
|
extreme f(x)=-x+2cos(x)
|
extreme\:f(x)=-x+2\cos(x)
|
extreme (x+4)/(x^2-5x-36)
|
extreme\:\frac{x+4}{x^{2}-5x-36}
|
extreme f(x)=-(5x^3)/3+10x^2-15x,(-2,5)
|
extreme\:f(x)=-\frac{5x^{3}}{3}+10x^{2}-15x,(-2,5)
|
extreme f(x)=-2(-3x-3)e^{-2x}
|
extreme\:f(x)=-2(-3x-3)e^{-2x}
|
f(x,y)=x^2+y^2-xy-2x+y
|
f(x,y)=x^{2}+y^{2}-xy-2x+y
|
extreme f(x)=-x^3-12x^2
|
extreme\:f(x)=-x^{3}-12x^{2}
|
extreme f(x)=|x^3|-2x
|
extreme\:f(x)=\left|x^{3}\right|-2x
|
extreme f(x)=90x^2-0.2x^4
|
extreme\:f(x)=90x^{2}-0.2x^{4}
|
intercepts of f(x)=y=x^2+5x+6
|
intercepts\:f(x)=y=x^{2}+5x+6
|
f(x*y)=3x^2-4xy+3y^2+8x-17y+5
|
f(x\cdot\:y)=3x^{2}-4xy+3y^{2}+8x-17y+5
|
extreme x^3-16xy+4y^2+16x^2-12x+5
|
extreme\:x^{3}-16xy+4y^{2}+16x^{2}-12x+5
|
extreme f(x)=6x^3+2x
|
extreme\:f(x)=6x^{3}+2x
|
extreme y=x^3-3x^2+4x-4
|
extreme\:y=x^{3}-3x^{2}+4x-4
|
f(xy)=xy
|
f(xy)=xy
|
extreme f(x)=2x^3-3x^2-12x+18
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+18
|
extreme f(x)=x^3-3x^2-9x+1,0<= x<= 5
|
extreme\:f(x)=x^{3}-3x^{2}-9x+1,0\le\:x\le\:5
|
range of 4x^4-14
|
range\:4x^{4}-14
|
f(x,y)= 1/4 x^4-1/2 x^2+y^2
|
f(x,y)=\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+y^{2}
|
extreme f(x)=x+4/(x^2)
|
extreme\:f(x)=x+\frac{4}{x^{2}}
|
extreme f(x)=(x-2)(x+1)(x+4)
|
extreme\:f(x)=(x-2)(x+1)(x+4)
|
extreme f(x)=x^3-3x-3
|
extreme\:f(x)=x^{3}-3x-3
|
extreme x^2+y^2-xy
|
extreme\:x^{2}+y^{2}-xy
|
extreme f(x)=14x^2-2x^3+4xy
|
extreme\:f(x)=14x^{2}-2x^{3}+4xy
|
extreme f(x)=ln(x^2+7x+15)
|
extreme\:f(x)=\ln(x^{2}+7x+15)
|
extreme f(x)=-2/(x^2)
|
extreme\:f(x)=-\frac{2}{x^{2}}
|
extreme x^3-3x^2+5
|
extreme\:x^{3}-3x^{2}+5
|
extreme f(x)=(x^2)/(4-x^2)
|
extreme\:f(x)=\frac{x^{2}}{4-x^{2}}
|
extreme points of x^3e^{3x}
|
extreme\:points\:x^{3}e^{3x}
|
f(x,y)= 1/5 x^5-5/3 x^3+4x+xy^2
|
f(x,y)=\frac{1}{5}x^{5}-\frac{5}{3}x^{3}+4x+xy^{2}
|
extreme f(x)=x^4-12x^2+36
|
extreme\:f(x)=x^{4}-12x^{2}+36
|
extreme f(x)=1+cos(x)
|
extreme\:f(x)=1+\cos(x)
|
extreme f(x)=x^2e^{-6x}
|
extreme\:f(x)=x^{2}e^{-6x}
|
extreme f(x)=3x^3-3x^2-3x+4
|
extreme\:f(x)=3x^{3}-3x^{2}-3x+4
|
extreme f(x)=3x^3-3x^2-3x+5
|
extreme\:f(x)=3x^{3}-3x^{2}-3x+5
|
f(x,y)=kxy^2+kx^2y+xy
|
f(x,y)=kxy^{2}+kx^{2}y+xy
|
extreme y=2x^3+3x^2-12x+5
|
extreme\:y=2x^{3}+3x^{2}-12x+5
|
extreme f(x)=4x+4sin(x),0<= x<= 2pi
|
extreme\:f(x)=4x+4\sin(x),0\le\:x\le\:2π
|
extreme f(x,y)=x^2+7xy+y^2
|
extreme\:f(x,y)=x^{2}+7xy+y^{2}
|
intercepts of x^3-x
|
intercepts\:x^{3}-x
|
extreme f(x)=2x^2-16ln(x)
|
extreme\:f(x)=2x^{2}-16\ln(x)
|
f(x,y)=xsqrt(1+y^3)
|
f(x,y)=x\sqrt{1+y^{3}}
|
extreme f(x)=(1+x)/(1+x^2)
|
extreme\:f(x)=\frac{1+x}{1+x^{2}}
|
extreme f(x)=x^2y+2xy-y^2-3y
|
extreme\:f(x)=x^{2}y+2xy-y^{2}-3y
|
extreme f(x)=x^3-3x+2,(-2,2)
|
extreme\:f(x)=x^{3}-3x+2,(-2,2)
|
extreme f(x)=288y^2+x^2-x^2y
|
extreme\:f(x)=288y^{2}+x^{2}-x^{2}y
|
f(x,y)=5x^2-xy+3y^2
|
f(x,y)=5x^{2}-xy+3y^{2}
|
p(b,c)=2b+2c
|
p(b,c)=2b+2c
|
extreme f(x)=|x-5|+1
|
extreme\:f(x)=\left|x-5\right|+1
|
inverse of f(x)= 1/2 (x-4)^3
|
inverse\:f(x)=\frac{1}{2}(x-4)^{3}
|
extreme g(x)=xsqrt(8-x^2)
|
extreme\:g(x)=x\sqrt{8-x^{2}}
|
f(x,y)=sqrt(400-25x^2-64y^2)
|
f(x,y)=\sqrt{400-25x^{2}-64y^{2}}
|
extreme f(x)=x^3+3x^2-9x-1
|
extreme\:f(x)=x^{3}+3x^{2}-9x-1
|
f(x,y)=(1/2-x^2+y^2)e^{1-x^2-y^2}
|
f(x,y)=(\frac{1}{2}-x^{2}+y^{2})e^{1-x^{2}-y^{2}}
|
extreme f(x)=x^2-8x+9
|
extreme\:f(x)=x^{2}-8x+9
|
extreme f(x,y)=x^3-y^3+6xy
|
extreme\:f(x,y)=x^{3}-y^{3}+6xy
|
extreme f(x,y)=288y^2+x^2-x^2y
|
extreme\:f(x,y)=288y^{2}+x^{2}-x^{2}y
|
domain of sqrt(2x-x^2)
|
domain\:\sqrt{2x-x^{2}}
|
f(x,y)=x(x-4)y(y-4)
|
f(x,y)=x(x-4)y(y-4)
|
f(x,y)=x^2-2x+y^2
|
f(x,y)=x^{2}-2x+y^{2}
|
extreme f(x)=2x^3-3x^2-12x-3
|
extreme\:f(x)=2x^{3}-3x^{2}-12x-3
|
extreme f(x)=5(5x)^x,0.05<= x<= 1
|
extreme\:f(x)=5(5x)^{x},0.05\le\:x\le\:1
|
extreme f(x)=3x^3e^{-x},-1<= x<= 6
|
extreme\:f(x)=3x^{3}e^{-x},-1\le\:x\le\:6
|
extreme y=x^4-4x^2=x^2(x^2-4)
|
extreme\:y=x^{4}-4x^{2}=x^{2}(x^{2}-4)
|
extreme f(x)=2x^3+3x^2-12x+7
|
extreme\:f(x)=2x^{3}+3x^{2}-12x+7
|
extreme-x+2cos(x)
|
extreme\:-x+2\cos(x)
|
domain of f(x)=5-2x^2
|
domain\:f(x)=5-2x^{2}
|
extreme f(x,y)=x^2y+2xy-y^2-3y
|
extreme\:f(x,y)=x^{2}y+2xy-y^{2}-3y
|
extreme f(x)=cos(x)-3x
|
extreme\:f(x)=\cos(x)-3x
|
extreme f(x)=3x^2-24ln(x)
|
extreme\:f(x)=3x^{2}-24\ln(x)
|
extreme y=2sin(5x-30)+4
|
extreme\:y=2\sin(5x-30)+4
|
extreme f(x)=5sin(3x)-5,(0,2pi)
|
extreme\:f(x)=5\sin(3x)-5,(0,2π)
|
extreme f(x)=7+4x^2-x^4
|
extreme\:f(x)=7+4x^{2}-x^{4}
|
extreme f(x)= x/(x^2-x+16),0<= x<= 12
|
extreme\:f(x)=\frac{x}{x^{2}-x+16},0\le\:x\le\:12
|