extreme f(x)= x/(sqrt(x-4)),6<= x<= 10
|
extreme\:f(x)=\frac{x}{\sqrt{x-4}},6\le\:x\le\:10
|
inverse of f(x)=6x-x^2
|
inverse\:f(x)=6x-x^{2}
|
f(x)=(x-1)^2+(y-2)^2
|
f(x)=(x-1)^{2}+(y-2)^{2}
|
extreme f(x)=(3x^2)/(x^2-16)
|
extreme\:f(x)=\frac{3x^{2}}{x^{2}-16}
|
extreme f(x)=x^4+32x
|
extreme\:f(x)=x^{4}+32x
|
p(x)=3x^3-4x^2+ax-50
|
p(x)=3x^{3}-4x^{2}+ax-50
|
extreme (ln(x^2))/(x^2)
|
extreme\:\frac{\ln(x^{2})}{x^{2}}
|
extreme f(x)=x^3-12x^2+80
|
extreme\:f(x)=x^{3}-12x^{2}+80
|
extreme f(x)=20y-2x^2-4xy-y^2+30x
|
extreme\:f(x)=20y-2x^{2}-4xy-y^{2}+30x
|
extreme f(x,y)=x^2+4xy+y^2
|
extreme\:f(x,y)=x^{2}+4xy+y^{2}
|
f(x,y)=x^2y+12x^2+(3y^2)/2+5
|
f(x,y)=x^{2}y+12x^{2}+\frac{3y^{2}}{2}+5
|
extreme f(x)=x^{2/3},-1<= x<= 27
|
extreme\:f(x)=x^{\frac{2}{3}},-1\le\:x\le\:27
|
slope of 4
|
slope\:4
|
extreme points of-x^3+8x^2-15x
|
extreme\:points\:-x^{3}+8x^{2}-15x
|
extreme f(x)= 1/4 x^4-2x^3+4
|
extreme\:f(x)=\frac{1}{4}x^{4}-2x^{3}+4
|
extreme f(x)= 1/4 x^4-2x^3+1
|
extreme\:f(x)=\frac{1}{4}x^{4}-2x^{3}+1
|
extreme y= x/(x^2+4)
|
extreme\:y=\frac{x}{x^{2}+4}
|
extreme y=x(x-1)^5
|
extreme\:y=x(x-1)^{5}
|
extreme f(x)=x^3+6x^2-6
|
extreme\:f(x)=x^{3}+6x^{2}-6
|
f(x,y)=xy+x^2+y^2-x+y+17
|
f(x,y)=xy+x^{2}+y^{2}-x+y+17
|
extreme f(x)=2x^3-3x^2-12x+1,-4<= x<= 5
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+1,-4\le\:x\le\:5
|
extreme f(x)=4x-12x^{1/3}
|
extreme\:f(x)=4x-12x^{\frac{1}{3}}
|
extreme f(x)=sqrt(3)x+2cos(x)
|
extreme\:f(x)=\sqrt{3}x+2\cos(x)
|
extreme f(t)= t/(t-4)
|
extreme\:f(t)=\frac{t}{t-4}
|
range of f(x)=(x-2)^2+3
|
range\:f(x)=(x-2)^{2}+3
|
extreme f(x)=e^{(x)}(2x^2+x-8)
|
extreme\:f(x)=e^{(x)}(2x^{2}+x-8)
|
extreme f(x)=-2x^{5/3}+4\sqrt[3]{x}
|
extreme\:f(x)=-2x^{\frac{5}{3}}+4\sqrt[3]{x}
|
extreme f(x)=((x^2-5x+4))/(x-5)
|
extreme\:f(x)=\frac{(x^{2}-5x+4)}{x-5}
|
extreme f(x)=2x^3-3x^2-72x+15
|
extreme\:f(x)=2x^{3}-3x^{2}-72x+15
|
extreme-x^3-9x^2
|
extreme\:-x^{3}-9x^{2}
|
extreme y=(x^2+2)/(x^2-25)
|
extreme\:y=\frac{x^{2}+2}{x^{2}-25}
|
extreme f(x)=-sin(x)-4,(0,2pi)
|
extreme\:f(x)=-\sin(x)-4,(0,2π)
|
extreme f(x)=(x+5)/(x^2-4)
|
extreme\:f(x)=\frac{x+5}{x^{2}-4}
|
extreme f(x)=6+9x^2-6x^3
|
extreme\:f(x)=6+9x^{2}-6x^{3}
|
extreme f(x)=14x+17x^{14/17}
|
extreme\:f(x)=14x+17x^{\frac{14}{17}}
|
line (-2,-6),(4,6)
|
line\:(-2,-6),(4,6)
|
f(x,y)=2xy-6y^2+x^2y-3y+7
|
f(x,y)=2xy-6y^{2}+x^{2}y-3y+7
|
extreme f(x)=2x^4-x^2+5
|
extreme\:f(x)=2x^{4}-x^{2}+5
|
extreme f(x)=2x^2+x+2
|
extreme\:f(x)=2x^{2}+x+2
|
extreme y=6x^4+8x^3
|
extreme\:y=6x^{4}+8x^{3}
|
pijz+3w
|
πjz+3w
|
extreme f(x)=4(x-e^x)
|
extreme\:f(x)=4(x-e^{x})
|
extreme f(x)=x^2+y^2-2y+1
|
extreme\:f(x)=x^{2}+y^{2}-2y+1
|
extreme ln(x+2)+1/x ,1<= x<= 5
|
extreme\:\ln(x+2)+\frac{1}{x},1\le\:x\le\:5
|
extreme ((x^2-3))/(x-2)
|
extreme\:\frac{(x^{2}-3)}{x-2}
|
line y=8x-7
|
line\:y=8x-7
|
extreme f(x)=-2x^2+68x-60
|
extreme\:f(x)=-2x^{2}+68x-60
|
extreme y=2x^2+8x+8
|
extreme\:y=2x^{2}+8x+8
|
extreme-(6x)/(6x^2+8)
|
extreme\:-\frac{6x}{6x^{2}+8}
|
f(x)=14x^2-2x^3+2y^2+4xy
|
f(x)=14x^{2}-2x^{3}+2y^{2}+4xy
|
extreme 200e^{-0.1p}
|
extreme\:200e^{-0.1p}
|
extreme-x^3+2
|
extreme\:-x^{3}+2
|
extreme f(x)=2+x^{2/3}
|
extreme\:f(x)=2+x^{\frac{2}{3}}
|
extreme y^2-xy-x^2
|
extreme\:y^{2}-xy-x^{2}
|
f(x,y)=(2xy^2-x^2y)/(x^2+y^2)
|
f(x,y)=\frac{2xy^{2}-x^{2}y}{x^{2}+y^{2}}
|
extreme f(x)=1+2x-3x^2
|
extreme\:f(x)=1+2x-3x^{2}
|
slope of-5/2 \land (2,3)
|
slope\:-\frac{5}{2}\land\:(2,3)
|
f(5/4 , 1/4)=2xy-x^2-5y^2+2x+1
|
f(\frac{5}{4},\frac{1}{4})=2xy-x^{2}-5y^{2}+2x+1
|
f(x)=3+x^2+xy+y^2
|
f(x)=3+x^{2}+xy+y^{2}
|
f(x)=2x+2y
|
f(x)=2x+2y
|
extreme f(x)=(ln(x))/(2x)
|
extreme\:f(x)=\frac{\ln(x)}{2x}
|
f(x,y)=23-2x^3-y^2-6xy
|
f(x,y)=23-2x^{3}-y^{2}-6xy
|
extreme 2x+1/x
|
extreme\:2x+\frac{1}{x}
|
extreme f(x)=(2e^{3x})/(-2x-5)
|
extreme\:f(x)=\frac{2e^{3x}}{-2x-5}
|
extreme f(x)=x^4+x^2+3
|
extreme\:f(x)=x^{4}+x^{2}+3
|
extreme f(x)=x^4-5x^3-15x^2
|
extreme\:f(x)=x^{4}-5x^{3}-15x^{2}
|
f(x,y)=x+sqrt(2)y
|
f(x,y)=x+\sqrt{2}y
|
domain of (-6x+23)/(7x-16)
|
domain\:\frac{-6x+23}{7x-16}
|
extreme 5sin^2(x)
|
extreme\:5\sin^{2}(x)
|
extreme f(x)=-x^2+3x+5
|
extreme\:f(x)=-x^{2}+3x+5
|
f(x,y)=x^3y^2-3xy
|
f(x,y)=x^{3}y^{2}-3xy
|
extreme f(x)=(x^2-1)/(4-x^2)
|
extreme\:f(x)=\frac{x^{2}-1}{4-x^{2}}
|
f(x,y)=-2x^2+8x-3y^2+24y+7
|
f(x,y)=-2x^{2}+8x-3y^{2}+24y+7
|
extreme f(x)=sqrt(x^2-2x+2)
|
extreme\:f(x)=\sqrt{x^{2}-2x+2}
|
f(x,y)=2x^2+2y^2-4x-y+1
|
f(x,y)=2x^{2}+2y^{2}-4x-y+1
|
f(x,y)=sqrt(400-64x^2-49y^2)
|
f(x,y)=\sqrt{400-64x^{2}-49y^{2}}
|
extreme f(x)=(x^2-5)^4(x^2+1)^5
|
extreme\:f(x)=(x^{2}-5)^{4}(x^{2}+1)^{5}
|
extreme f(x)=240x+57x^2-x^3
|
extreme\:f(x)=240x+57x^{2}-x^{3}
|
domain of h(x)=(sqrt(2))/(sqrt(x^2-4))
|
domain\:h(x)=\frac{\sqrt{2}}{\sqrt{x^{2}-4}}
|
extreme f(x)=e^{-x^2-y^2}(x^2+2y^2)
|
extreme\:f(x)=e^{-x^{2}-y^{2}}(x^{2}+2y^{2})
|
extreme f(x)=x^2+2x+5
|
extreme\:f(x)=x^{2}+2x+5
|
extreme (x^2-12)/(x-4)
|
extreme\:\frac{x^{2}-12}{x-4}
|
extreme f(x)=-4x+5ln(2x)
|
extreme\:f(x)=-4x+5\ln(2x)
|
minimum f(x,y)=x^3+4y^2-3x+1
|
minimum\:f(x,y)=x^{3}+4y^{2}-3x+1
|
extreme f(x)=3+5x-5x^2
|
extreme\:f(x)=3+5x-5x^{2}
|
extreme f(x)=x^{7/9}
|
extreme\:f(x)=x^{\frac{7}{9}}
|
inflection points of f(x)=(x^2)/(8x^2+2)
|
inflection\:points\:f(x)=\frac{x^{2}}{8x^{2}+2}
|
extreme x+cos(2x),0<= x<= pi
|
extreme\:x+\cos(2x),0\le\:x\le\:π
|
extreme f(x)=(x^2)/(x^2+192)
|
extreme\:f(x)=\frac{x^{2}}{x^{2}+192}
|
extreme f(x)=2x^2+4x-5
|
extreme\:f(x)=2x^{2}+4x-5
|
f(x,y)=3x^2+y^2-xy-11x
|
f(x,y)=3x^{2}+y^{2}-xy-11x
|
f(t)=(t)+2u(t)-3e^{-2t}u(t)
|
f(t)=(t)+2u(t)-3e^{-2t}u(t)
|
extreme f(x)=(x-6)e^x
|
extreme\:f(x)=(x-6)e^{x}
|
extreme f(x)=(x+14)(x-7)^2
|
extreme\:f(x)=(x+14)(x-7)^{2}
|
extreme f(x)=x^3-48x,-5<= x<= 5
|
extreme\:f(x)=x^{3}-48x,-5\le\:x\le\:5
|
extreme y=5x^6-3x^4+2x-9
|
extreme\:y=5x^{6}-3x^{4}+2x-9
|
extreme f(x)=x^3+2xy^2-5x-4y+20
|
extreme\:f(x)=x^{3}+2xy^{2}-5x-4y+20
|
extreme points of f(x)=x^3-3x^2-9x-4
|
extreme\:points\:f(x)=x^{3}-3x^{2}-9x-4
|
f(t)=5e^{at}
|
f(t)=5e^{at}
|
f(x)=Ix-4I
|
f(x)=Ix-4I
|