extreme f(x)=x^7e^{2x}+2
|
extreme\:f(x)=x^{7}e^{2x}+2
|
extreme f(x)=x^3+12xy+y^4
|
extreme\:f(x)=x^{3}+12xy+y^{4}
|
inverse of f(x)=log_{2\div 5}(x)
|
inverse\:f(x)=\log_{2\div\:5}(x)
|
extreme f(x)=3x-5ln(4x)
|
extreme\:f(x)=3x-5\ln(4x)
|
extreme f(x,y)=-4/(x^2),0.5<= x<= 4
|
extreme\:f(x,y)=-\frac{4}{x^{2}},0.5\le\:x\le\:4
|
extreme xe^{-5x}
|
extreme\:xe^{-5x}
|
extreme f(x)=4xy+50y-9y^2-1/10 x^2y-130
|
extreme\:f(x)=4xy+50y-9y^{2}-\frac{1}{10}x^{2}y-130
|
extreme f(x)=x^4+y^4-xy
|
extreme\:f(x)=x^{4}+y^{4}-xy
|
extreme f(x)=4x^3-108x^2+729x
|
extreme\:f(x)=4x^{3}-108x^{2}+729x
|
extreme f(x)=4x^{3/4}-x,0<= x<= 256
|
extreme\:f(x)=4x^{\frac{3}{4}}-x,0\le\:x\le\:256
|
extreme-x^3+6x^2+15x+4
|
extreme\:-x^{3}+6x^{2}+15x+4
|
extreme f(x)=x^2-5x-1
|
extreme\:f(x)=x^{2}-5x-1
|
extreme f(x)=xsqrt(x+8)
|
extreme\:f(x)=x\sqrt{x+8}
|
perpendicular-12=-16x+8
|
perpendicular\:-12=-16x+8
|
parallel y=7x-3
|
parallel\:y=7x-3
|
extreme f(x)=(x+2)/(x^2-3x-10)
|
extreme\:f(x)=\frac{x+2}{x^{2}-3x-10}
|
extreme f(x)=(x^2-2x)e^{-x}
|
extreme\:f(x)=(x^{2}-2x)e^{-x}
|
extreme y= 1/3 x^3-9x^2+72x+2
|
extreme\:y=\frac{1}{3}x^{3}-9x^{2}+72x+2
|
f(x)=(2^2+3x)^2-(2x^3-4y^2)
|
f(x)=(2^{2}+3x)^{2}-(2x^{3}-4y^{2})
|
extreme x^2-10x
|
extreme\:x^{2}-10x
|
f(x,y)=-x^2-y^2+16
|
f(x,y)=-x^{2}-y^{2}+16
|
extreme f(x)=3x^4-294x^2+5
|
extreme\:f(x)=3x^{4}-294x^{2}+5
|
extreme f(x)=4x^2-4x^4
|
extreme\:f(x)=4x^{2}-4x^{4}
|
intercepts of f(x)=(2x^2+3)(x^2-5)
|
intercepts\:f(x)=(2x^{2}+3)(x^{2}-5)
|
extreme f(x,y)=(x-1)^2+y^2+5
|
extreme\:f(x,y)=(x-1)^{2}+y^{2}+5
|
f(x,y)=3x^2+3y^2-x^3-3xy^2
|
f(x,y)=3x^{2}+3y^{2}-x^{3}-3xy^{2}
|
minimum f(x)=(2e^x)/(x^5),[0,infinity ]
|
minimum\:f(x)=\frac{2e^{x}}{x^{5}},[0,\infty\:]
|
extreme 5x^3e^{-x}
|
extreme\:5x^{3}e^{-x}
|
extreme f(x)=x-2sin(x),(0,2pi)
|
extreme\:f(x)=x-2\sin(x),(0,2π)
|
extreme f(x)=(-1)/(5x^2+25x+30)
|
extreme\:f(x)=\frac{-1}{5x^{2}+25x+30}
|
extreme f(x)=(5x)/(x^2-1)
|
extreme\:f(x)=\frac{5x}{x^{2}-1}
|
extreme f(x)=-(x^3)/3+2x^2+5x+1
|
extreme\:f(x)=-\frac{x^{3}}{3}+2x^{2}+5x+1
|
extreme (7x+5)/(x+9)+(8x-10)/(x+9)
|
extreme\:\frac{7x+5}{x+9}+\frac{8x-10}{x+9}
|
intercepts of f(x)=2x^2+8x+12
|
intercepts\:f(x)=2x^{2}+8x+12
|
extreme x-8\sqrt[3]{x}
|
extreme\:x-8\sqrt[3]{x}
|
extreme f(x)=x^2+xy+y^2-22y+161
|
extreme\:f(x)=x^{2}+xy+y^{2}-22y+161
|
extreme f(x)=x+4/x ,0.2<= x<= 8
|
extreme\:f(x)=x+\frac{4}{x},0.2\le\:x\le\:8
|
extreme f(x)=(5-x)^{2/3}(1+x)^{1/3}
|
extreme\:f(x)=(5-x)^{\frac{2}{3}}(1+x)^{\frac{1}{3}}
|
extreme x^{1/3}(x^2-9)
|
extreme\:x^{\frac{1}{3}}(x^{2}-9)
|
extreme f(x)=x*e^x
|
extreme\:f(x)=x\cdot\:e^{x}
|
extreme f(x)=x^3+2x^2-20x,0<= x<= 3
|
extreme\:f(x)=x^{3}+2x^{2}-20x,0\le\:x\le\:3
|
extreme x^{13/3}-9x^{7/3}
|
extreme\:x^{\frac{13}{3}}-9x^{\frac{7}{3}}
|
extreme f(x)=-x^3+3x-1
|
extreme\:f(x)=-x^{3}+3x-1
|
asymptotes of f(x)=sqrt(9x^2-6x)-3x
|
asymptotes\:f(x)=\sqrt{9x^{2}-6x}-3x
|
extreme x^3-9x+2
|
extreme\:x^{3}-9x+2
|
extreme f(x)=2x^3-9x^2-60x+8
|
extreme\:f(x)=2x^{3}-9x^{2}-60x+8
|
extreme f(x,y)=x^3-3xy+3y^2
|
extreme\:f(x,y)=x^{3}-3xy+3y^{2}
|
extreme f(x,y)=7e^y-7ye^x
|
extreme\:f(x,y)=7e^{y}-7ye^{x}
|
extreme f(x)=x^4-50x^2+3
|
extreme\:f(x)=x^{4}-50x^{2}+3
|
extreme f(x)=-3x^2+x^3
|
extreme\:f(x)=-3x^{2}+x^{3}
|
extreme f(x)=4xe^{3x}
|
extreme\:f(x)=4xe^{3x}
|
extreme f(x)=6x^{1/6}y^{1/6}-x-y
|
extreme\:f(x)=6x^{\frac{1}{6}}y^{\frac{1}{6}}-x-y
|
extreme (x-4)e^x
|
extreme\:(x-4)e^{x}
|
extreme f(x)=x^2(2-x)^3
|
extreme\:f(x)=x^{2}(2-x)^{3}
|
f(x,y)=x^3+2xy^2-(y^4)/x
|
f(x,y)=x^{3}+2xy^{2}-\frac{y^{4}}{x}
|
extreme f(x)=(x^3)/(3x^2+1)
|
extreme\:f(x)=\frac{x^{3}}{3x^{2}+1}
|
minimum 9x^2+18x+7
|
minimum\:9x^{2}+18x+7
|
extreme f(x)=(x-3)/(x^2)
|
extreme\:f(x)=\frac{x-3}{x^{2}}
|
extreme f(x)=x^2-10x-5
|
extreme\:f(x)=x^{2}-10x-5
|
extreme x^5ln(x)
|
extreme\:x^{5}\ln(x)
|
extreme f(x)=14x^2+7xy-7/4 y^2-7x+4y
|
extreme\:f(x)=14x^{2}+7xy-\frac{7}{4}y^{2}-7x+4y
|
extreme f(x)=7sqrt(x)
|
extreme\:f(x)=7\sqrt{x}
|
extreme-x^2
|
extreme\:-x^{2}
|
domain of f(x)= 2/((x+5)^2)
|
domain\:f(x)=\frac{2}{(x+5)^{2}}
|
extreme f(x)=-2x^2-16x-31
|
extreme\:f(x)=-2x^{2}-16x-31
|
extreme y=x^2-2x+1
|
extreme\:y=x^{2}-2x+1
|
extreme f(x)=(x^2-35)/(x-6)
|
extreme\:f(x)=\frac{x^{2}-35}{x-6}
|
extreme x^3-18x^2+81x
|
extreme\:x^{3}-18x^{2}+81x
|
extreme f(x,y)=x^2+xy+y^2+8y
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+8y
|
extreme f(x,y)=x^2+xy+y^2+5y
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+5y
|
extreme (x^2-9)/(x^2-4)
|
extreme\:\frac{x^{2}-9}{x^{2}-4}
|
extreme y=2x^3-6x+1
|
extreme\:y=2x^{3}-6x+1
|
extreme f(x)=-9+x^2
|
extreme\:f(x)=-9+x^{2}
|
extreme f(x)=(-1)/(x-6)
|
extreme\:f(x)=\frac{-1}{x-6}
|
inflection points of f(x)=x^3-3x^2-45x+5
|
inflection\:points\:f(x)=x^{3}-3x^{2}-45x+5
|
extreme f(x,y)=x^3-18xy+y^3
|
extreme\:f(x,y)=x^{3}-18xy+y^{3}
|
extreme f(x)=x^4-3x^3+x^2
|
extreme\:f(x)=x^{4}-3x^{3}+x^{2}
|
extreme f(x)=ln(x^3+3x^2+5)
|
extreme\:f(x)=\ln(x^{3}+3x^{2}+5)
|
extreme f(x)= 4/(x^2)
|
extreme\:f(x)=\frac{4}{x^{2}}
|
F(x,y)=x^3-2x^2y^2-2x-4y+10
|
F(x,y)=x^{3}-2x^{2}y^{2}-2x-4y+10
|
extreme (x+3)^4(2-x)
|
extreme\:(x+3)^{4}(2-x)
|
f(x,y)=x^2+xy+y^2+8y
|
f(x,y)=x^{2}+xy+y^{2}+8y
|
f(x,y)=x^2+xy+y^2+5y
|
f(x,y)=x^{2}+xy+y^{2}+5y
|
extreme f(x)=x^2+5x+9
|
extreme\:f(x)=x^{2}+5x+9
|
parity f(x)=(x^2-x)/(x^2+1)
|
parity\:f(x)=\frac{x^{2}-x}{x^{2}+1}
|
f(x,y)=x^2+xy+y^2+4y
|
f(x,y)=x^{2}+xy+y^{2}+4y
|
extreme f(x)=1+2x-x^2
|
extreme\:f(x)=1+2x-x^{2}
|
f(x,y)=6x^2-xy+4y^2
|
f(x,y)=6x^{2}-xy+4y^{2}
|
extreme-x^4+4x^3+8x^2
|
extreme\:-x^{4}+4x^{3}+8x^{2}
|
f(x,y)=3x^2-xy+5y^2
|
f(x,y)=3x^{2}-xy+5y^{2}
|
extreme f(x)=x^{7/5}-12x^{1/5}
|
extreme\:f(x)=x^{\frac{7}{5}}-12x^{\frac{1}{5}}
|
extreme f(x)=x^2-12
|
extreme\:f(x)=x^{2}-12
|
extreme f(x)=4x^{3/5}-x^{4/5}
|
extreme\:f(x)=4x^{\frac{3}{5}}-x^{\frac{4}{5}}
|
range of e^x-3
|
range\:e^{x}-3
|
extreme f(x)=(x+3)/(x^2-x-12)
|
extreme\:f(x)=\frac{x+3}{x^{2}-x-12}
|
extreme f(x)=-5sin(x)cos(x)
|
extreme\:f(x)=-5\sin(x)\cos(x)
|
extreme x^4+8x^3
|
extreme\:x^{4}+8x^{3}
|
extreme f(x)=x^2-9x
|
extreme\:f(x)=x^{2}-9x
|
extreme f(x)=((e^x)/(7+e^x))
|
extreme\:f(x)=(\frac{e^{x}}{7+e^{x}})
|
extreme f(x)=6x^2-12
|
extreme\:f(x)=6x^{2}-12
|