minimum x^2+2x+3
|
minimum\:x^{2}+2x+3
|
extreme f(x)=x^4-24x^2+23
|
extreme\:f(x)=x^{4}-24x^{2}+23
|
extreme ((x^2-5)^3)/(125)
|
extreme\:\frac{(x^{2}-5)^{3}}{125}
|
inverse of f(x)=x^{1/4}-3
|
inverse\:f(x)=x^{\frac{1}{4}}-3
|
extreme f(x)=2x^2-6x+4,0<= x<= 10
|
extreme\:f(x)=2x^{2}-6x+4,0\le\:x\le\:10
|
extreme x^2+y^2+xy
|
extreme\:x^{2}+y^{2}+xy
|
extreme f(x)=|x^3-3x^2+2|
|
extreme\:f(x)=\left|x^{3}-3x^{2}+2\right|
|
extreme f(x)=(4x+3)/(x^2)
|
extreme\:f(x)=\frac{4x+3}{x^{2}}
|
extreme 12y^3+64x^2y-2304y-7
|
extreme\:12y^{3}+64x^{2}y-2304y-7
|
f(x,y)=sqrt(8-x^2-y^2)
|
f(x,y)=\sqrt{8-x^{2}-y^{2}}
|
extreme f(x)=0.5x-6sqrt(x)
|
extreme\:f(x)=0.5x-6\sqrt{x}
|
extreme f(x)=x^4-12x^3+5
|
extreme\:f(x)=x^{4}-12x^{3}+5
|
extreme xsqrt(64-x^2)
|
extreme\:x\sqrt{64-x^{2}}
|
f(x,y)=x*e^{y/x}
|
f(x,y)=x\cdot\:e^{\frac{y}{x}}
|
inverse of f(x)=4x^3-10
|
inverse\:f(x)=4x^{3}-10
|
inverse of f(x)=log_{2}(x+2)
|
inverse\:f(x)=\log_{2}(x+2)
|
extreme f(x,y)=xy+4
|
extreme\:f(x,y)=xy+4
|
extreme f(x)=x+sqrt(8-x)
|
extreme\:f(x)=x+\sqrt{8-x}
|
extreme f(x)=x-(16)/x
|
extreme\:f(x)=x-\frac{16}{x}
|
extreme ((x^2-5))/(x+3)
|
extreme\:\frac{(x^{2}-5)}{x+3}
|
extreme f(x)=2x^2+3xy+4y^2-7x-11y
|
extreme\:f(x)=2x^{2}+3xy+4y^{2}-7x-11y
|
extreme f(x)=(sqrt(2))/2 x+sin(x)
|
extreme\:f(x)=\frac{\sqrt{2}}{2}x+\sin(x)
|
extreme f(x)= x/(\sqrt[3]{x^2-1)}
|
extreme\:f(x)=\frac{x}{\sqrt[3]{x^{2}-1}}
|
extreme f(x)=x^3+3x^2-9x+8
|
extreme\:f(x)=x^{3}+3x^{2}-9x+8
|
domain of f(x)=((x+1)^{1/3})/(x^2-5x+4)
|
domain\:f(x)=\frac{(x+1)^{\frac{1}{3}}}{x^{2}-5x+4}
|
extreme f(x)=x^2log_{5}(x)
|
extreme\:f(x)=x^{2}\log_{5}(x)
|
extreme f(x)=(x+2)^3(x-3)
|
extreme\:f(x)=(x+2)^{3}(x-3)
|
extreme f(x)=(x-1)(x-6)^3+6,1<= x<= 4
|
extreme\:f(x)=(x-1)(x-6)^{3}+6,1\le\:x\le\:4
|
extreme f(x)=x^4-5x^3+x^2+21x-18
|
extreme\:f(x)=x^{4}-5x^{3}+x^{2}+21x-18
|
f(x,y)=x^2-2xy+2y^2-2x+2y+1
|
f(x,y)=x^{2}-2xy+2y^{2}-2x+2y+1
|
extreme g(x,y)=e^x-x+e^y-y
|
extreme\:g(x,y)=e^{x}-x+e^{y}-y
|
minimum 1/(sqrt(3-2x-x^2))
|
minimum\:\frac{1}{\sqrt{3-2x-x^{2}}}
|
extreme f(x)=xsqrt(x^2+36)
|
extreme\:f(x)=x\sqrt{x^{2}+36}
|
extreme (-2x)/(x^2+y^2+1)
|
extreme\:\frac{-2x}{x^{2}+y^{2}+1}
|
perpendicular-6*sqrt(3)*x+6+2*sqrt(3)*pi
|
perpendicular\:-6\cdot\:\sqrt{3}\cdot\:x+6+2\cdot\:\sqrt{3}\cdot\:\pi
|
extreme f(x)=x^2e^{16x}
|
extreme\:f(x)=x^{2}e^{16x}
|
extreme f(x)=3t^3+2t^2-10t+600
|
extreme\:f(x)=3t^{3}+2t^{2}-10t+600
|
extreme 3x^2-x-2
|
extreme\:3x^{2}-x-2
|
extreme f(x)=((x^2-11))/(x-6)
|
extreme\:f(x)=\frac{(x^{2}-11)}{x-6}
|
extreme f(x,y)=x^2y+y^3-27y
|
extreme\:f(x,y)=x^{2}y+y^{3}-27y
|
extreme y=(x-4)^2(x+2)^3
|
extreme\:y=(x-4)^{2}(x+2)^{3}
|
extreme f(x,y)=2x+y
|
extreme\:f(x,y)=2x+y
|
extreme f(x)= 1/3 x^3-x^2-3x+3
|
extreme\:f(x)=\frac{1}{3}x^{3}-x^{2}-3x+3
|
extreme f(x)=5x^3-30x^2+45x
|
extreme\:f(x)=5x^{3}-30x^{2}+45x
|
asymptotes of f(x)=-3/2 tan(x-(pi)/6)
|
asymptotes\:f(x)=-\frac{3}{2}\tan(x-\frac{\pi}{6})
|
extreme f(x)=xy^2-6x^2-3y^2
|
extreme\:f(x)=xy^{2}-6x^{2}-3y^{2}
|
extreme f(x)=3x+1/x
|
extreme\:f(x)=3x+\frac{1}{x}
|
extreme f(x)=x^3-15x^2+48x+2
|
extreme\:f(x)=x^{3}-15x^{2}+48x+2
|
extreme (x^2-5)/(x+3)
|
extreme\:\frac{x^{2}-5}{x+3}
|
extreme f(x,y)=x^2-xy+y^2-9x+6y+8
|
extreme\:f(x,y)=x^{2}-xy+y^{2}-9x+6y+8
|
extreme-x^2ln(x)
|
extreme\:-x^{2}\ln(x)
|
extreme f(x)= 3/(4x^4-8x^2)
|
extreme\:f(x)=\frac{3}{4x^{4}-8x^{2}}
|
extreme f(x)=x^3-45x^2+243x+30000
|
extreme\:f(x)=x^{3}-45x^{2}+243x+30000
|
extreme f(x)=x^3-27x,-2<= x<= 4
|
extreme\:f(x)=x^{3}-27x,-2\le\:x\le\:4
|
extreme-7x+2
|
extreme\:-7x+2
|
midpoint (-3,5)(4,4)
|
midpoint\:(-3,5)(4,4)
|
extreme f(x)=4x^2y-3xy^2+y
|
extreme\:f(x)=4x^{2}y-3xy^{2}+y
|
extreme f(x)=cos(x)-7x
|
extreme\:f(x)=\cos(x)-7x
|
extreme f(x)=(x-1)^3(x-2)
|
extreme\:f(x)=(x-1)^{3}(x-2)
|
extreme f(x)= 1/4 x^4-3x^3+4x^2
|
extreme\:f(x)=\frac{1}{4}x^{4}-3x^{3}+4x^{2}
|
extreme f(x)=-x^3+27x-51
|
extreme\:f(x)=-x^{3}+27x-51
|
f(x,y)=(2-sqrt(x^2+y))/y
|
f(x,y)=\frac{2-\sqrt{x^{2}+y}}{y}
|
extreme f(x)=-x^3+27x-63
|
extreme\:f(x)=-x^{3}+27x-63
|
extreme f(x)=3x^2-9y^2
|
extreme\:f(x)=3x^{2}-9y^{2}
|
f(x,y)=4-x^2-2y^2
|
f(x,y)=4-x^{2}-2y^{2}
|
range of f(x)=sqrt(5/x+2)
|
range\:f(x)=\sqrt{\frac{5}{x}+2}
|
extreme f(x)=-x^3+12x^2
|
extreme\:f(x)=-x^{3}+12x^{2}
|
extreme f(x)=3x+2y
|
extreme\:f(x)=3x+2y
|
extreme e^{8x}+e^{-x}
|
extreme\:e^{8x}+e^{-x}
|
extreme f(x)=x^4-x
|
extreme\:f(x)=x^{4}-x
|
extreme f(x)=x^2+y^2+xy^2
|
extreme\:f(x)=x^{2}+y^{2}+xy^{2}
|
f(t)=10e^{at}
|
f(t)=10e^{at}
|
extreme f(x)=2x^3-6x^2-90x+1
|
extreme\:f(x)=2x^{3}-6x^{2}-90x+1
|
extreme f(x)=(11-x)(x+1)^2
|
extreme\:f(x)=(11-x)(x+1)^{2}
|
f(x,y)=sqrt(400-16x^2-49y^2)
|
f(x,y)=\sqrt{400-16x^{2}-49y^{2}}
|
extreme f(x)=4x^3+9x^2-12x+5
|
extreme\:f(x)=4x^{3}+9x^{2}-12x+5
|
parity f(x)=4-x^2
|
parity\:f(x)=4-x^{2}
|
extreme f(x)=x^3-27x+5
|
extreme\:f(x)=x^{3}-27x+5
|
extreme f(x)=6x+(384)/x
|
extreme\:f(x)=6x+\frac{384}{x}
|
extreme f(x)=-2x^3+36x^2-192x
|
extreme\:f(x)=-2x^{3}+36x^{2}-192x
|
extreme f(x)=2x^3-6x^2-144x+7
|
extreme\:f(x)=2x^{3}-6x^{2}-144x+7
|
extreme f(x)=-3+3x-x^2
|
extreme\:f(x)=-3+3x-x^{2}
|
extreme f(x)=x(23-41+2x)(41/2-x)
|
extreme\:f(x)=x(23-41+2x)(\frac{41}{2}-x)
|
extreme x^3-3x^2-9x+2
|
extreme\:x^{3}-3x^{2}-9x+2
|
extreme x^3-3x^2-9x+4
|
extreme\:x^{3}-3x^{2}-9x+4
|
minimum 0.001x^3+8x+16
|
minimum\:0.001x^{3}+8x+16
|
f(x,y)=2x^2-y^2
|
f(x,y)=2x^{2}-y^{2}
|
inverse of f(x)=-1/64 (x-6)^3+3
|
inverse\:f(x)=-\frac{1}{64}(x-6)^{3}+3
|
minimum f(x)=x^{1/3}(x^2-9)
|
minimum\:f(x)=x^{\frac{1}{3}}(x^{2}-9)
|
extreme f(x)=x(85-0.05x)-(600+35x)
|
extreme\:f(x)=x(85-0.05x)-(600+35x)
|
extreme f(x)=xsqrt(5-x^2)
|
extreme\:f(x)=x\sqrt{5-x^{2}}
|
P(x,y)=x^2-y^2+6y-9
|
P(x,y)=x^{2}-y^{2}+6y-9
|
f(x,y)=(x^3)/3-y^2-5x+xy-3
|
f(x,y)=\frac{x^{3}}{3}-y^{2}-5x+xy-3
|
minimum h(x)=-2x^2-1,-4<= x<= 3
|
minimum\:h(x)=-2x^{2}-1,-4\le\:x\le\:3
|
extreme x^3-12x^2+45x-4
|
extreme\:x^{3}-12x^{2}+45x-4
|
extreme y^4-y^2-2xy+x^2
|
extreme\:y^{4}-y^{2}-2xy+x^{2}
|
intercepts of (x+1)/(x^2-1)
|
intercepts\:\frac{x+1}{x^{2}-1}
|
f(x,y)=log_{10}(((x^2+2*y))/((x+y)^2))
|
f(x,y)=\log_{10}(\frac{(x^{2}+2\cdot\:y)}{(x+y)^{2}})
|
extreme f(x)=y=tan((pix)/8),0<= x<= 2
|
extreme\:f(x)=y=\tan(\frac{πx}{8}),0\le\:x\le\:2
|
extreme x^4-y^3-2x^2+3y+1
|
extreme\:x^{4}-y^{3}-2x^{2}+3y+1
|