domain of f(x)=(2x)/(sqrt(x+5))
|
domain\:f(x)=\frac{2x}{\sqrt{x+5}}
|
extreme f(x)=16x+9/x
|
extreme\:f(x)=16x+\frac{9}{x}
|
extreme f(x)=x+(22)/x
|
extreme\:f(x)=x+\frac{22}{x}
|
extreme y=6x-7x^{6/7}
|
extreme\:y=6x-7x^{\frac{6}{7}}
|
f(x,y)=ln(sqrt(x^2+y^2-64))
|
f(x,y)=\ln(\sqrt{x^{2}+y^{2}-64})
|
extreme (x+6)^{2/3}
|
extreme\:(x+6)^{\frac{2}{3}}
|
extreme x^2y^2-x-y
|
extreme\:x^{2}y^{2}-x-y
|
extreme (x^2+2)/(x^2-4x)
|
extreme\:\frac{x^{2}+2}{x^{2}-4x}
|
f(x,y)=x^2+y^2-5x+4y+xy
|
f(x,y)=x^{2}+y^{2}-5x+4y+xy
|
extreme f(x)=x^2+xy+1/2 y^2-2x+y
|
extreme\:f(x)=x^{2}+xy+\frac{1}{2}y^{2}-2x+y
|
asymptotes of f(x)=(x^2-x-4)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}-x-4}{x-3}
|
f(x,y)=x-4x^2y+y^2
|
f(x,y)=x-4x^{2}y+y^{2}
|
extreme f(x)=x+(25)/x ,0.2<= x<= 20
|
extreme\:f(x)=x+\frac{25}{x},0.2\le\:x\le\:20
|
extreme y=x^3-30x^2+6000
|
extreme\:y=x^{3}-30x^{2}+6000
|
extreme f(x)=x^2+xy+y^2+y
|
extreme\:f(x)=x^{2}+xy+y^{2}+y
|
extreme f(x)-x^4-8x^2+1
|
extreme\:f(x)-x^{4}-8x^{2}+1
|
extreme f(x)=x^3-12x+17
|
extreme\:f(x)=x^{3}-12x+17
|
extreme f(x)=x^3+2x^2-20x
|
extreme\:f(x)=x^{3}+2x^{2}-20x
|
extreme e^{4x}+e^{-x}
|
extreme\:e^{4x}+e^{-x}
|
extreme f(x)=x^2-12x+8
|
extreme\:f(x)=x^{2}-12x+8
|
extreme f(x)=(2x^2)/(x^2-1)
|
extreme\:f(x)=\frac{2x^{2}}{x^{2}-1}
|
domain of f(x)= 1/3 x+2
|
domain\:f(x)=\frac{1}{3}x+2
|
line (1,3)(-1,2)
|
line\:(1,3)(-1,2)
|
extreme f(x,y)=x^2+5xy+y^2
|
extreme\:f(x,y)=x^{2}+5xy+y^{2}
|
extreme 12xe^{-x}
|
extreme\:12xe^{-x}
|
extreme f(x)=6+2x-2x^2
|
extreme\:f(x)=6+2x-2x^{2}
|
extreme f(x)=5x^3e^{-x},-1<= x<= 5
|
extreme\:f(x)=5x^{3}e^{-x},-1\le\:x\le\:5
|
f(x,y)=e^{4y-y^2-x^2}
|
f(x,y)=e^{4y-y^{2}-x^{2}}
|
extreme f(x)=sin(x)+sin^3(x),-pi<x<pi
|
extreme\:f(x)=\sin(x)+\sin^{3}(x),-π<x<π
|
extreme y=(x-1)^3(x-5)
|
extreme\:y=(x-1)^{3}(x-5)
|
extreme f(x)=4x-6
|
extreme\:f(x)=4x-6
|
extreme f(x)=-2/(x^2),0.5<= x<= 2
|
extreme\:f(x)=-\frac{2}{x^{2}},0.5\le\:x\le\:2
|
perpendicular y=3x-4,\at (-6,2)
|
perpendicular\:y=3x-4,\at\:(-6,2)
|
extreme f(x)=-2/(x^2),0.5<= x<= 5
|
extreme\:f(x)=-\frac{2}{x^{2}},0.5\le\:x\le\:5
|
extreme f(x)=2-3x
|
extreme\:f(x)=2-3x
|
extreme x^4-2x^2-y^2+3
|
extreme\:x^{4}-2x^{2}-y^{2}+3
|
extreme f(t)=9cos(2t)
|
extreme\:f(t)=9\cos(2t)
|
S(X,Y)=XY+
|
S(X,Y)=XY+
|
extreme f(x)=2x^3-36x^2+162x-4
|
extreme\:f(x)=2x^{3}-36x^{2}+162x-4
|
extreme f(x)=20x(1-x)^3
|
extreme\:f(x)=20x(1-x)^{3}
|
extreme 4x^3-48x-1
|
extreme\:4x^{3}-48x-1
|
extreme f(x)=x^3-9x^2+15x+8
|
extreme\:f(x)=x^{3}-9x^{2}+15x+8
|
f(x,y)=2ln(x)+4ln(y)-4x^2-y
|
f(x,y)=2\ln(x)+4\ln(y)-4x^{2}-y
|
inverse of f(x)= 1/9 x+2
|
inverse\:f(x)=\frac{1}{9}x+2
|
extreme f(x)= 1/2 x^4-4x^2+6
|
extreme\:f(x)=\frac{1}{2}x^{4}-4x^{2}+6
|
extreme f(x)=x^3-9x^2+15x+5
|
extreme\:f(x)=x^{3}-9x^{2}+15x+5
|
f(x,y)=-x^2+8-y^2
|
f(x,y)=-x^{2}+8-y^{2}
|
extreme f(x)=2x^2+(28)/x
|
extreme\:f(x)=2x^{2}+\frac{28}{x}
|
extreme f(x)=ln(x^2+3x+7),-2<= x<= 2
|
extreme\:f(x)=\ln(x^{2}+3x+7),-2\le\:x\le\:2
|
extreme g(x)=x^3-x^2-x+3
|
extreme\:g(x)=x^{3}-x^{2}-x+3
|
extreme f(x)=-x^2+10x-21,3<= x<= 7
|
extreme\:f(x)=-x^{2}+10x-21,3\le\:x\le\:7
|
extreme f(x)=4x^5-25x^4-40x^3-4
|
extreme\:f(x)=4x^{5}-25x^{4}-40x^{3}-4
|
extreme y=xsqrt(5-x)
|
extreme\:y=x\sqrt{5-x}
|
extreme f(x)=sqrt(144-x^2)
|
extreme\:f(x)=\sqrt{144-x^{2}}
|
domain of f(x)=(x^2+8)/(x^2-6x-16)
|
domain\:f(x)=\frac{x^{2}+8}{x^{2}-6x-16}
|
extreme f(x)=(x^3-4)/(x^2)
|
extreme\:f(x)=\frac{x^{3}-4}{x^{2}}
|
extreme f(x)=x^3+3x^2-45x+6
|
extreme\:f(x)=x^{3}+3x^{2}-45x+6
|
extreme-cos^2(x)-cos(x)
|
extreme\:-\cos^{2}(x)-\cos(x)
|
g(x,y)=sqrt(1-(x+y))
|
g(x,y)=\sqrt{1-(x+y)}
|
extreme f(x,y)=x^2+3y^2-2xy+10x-2y+4
|
extreme\:f(x,y)=x^{2}+3y^{2}-2xy+10x-2y+4
|
extreme f(x)=x^2*ln(x)
|
extreme\:f(x)=x^{2}\cdot\:\ln(x)
|
extreme 3x^{2/3}-2x,-1<= x<= 1
|
extreme\:3x^{\frac{2}{3}}-2x,-1\le\:x\le\:1
|
extreme f(x)=-25(x-9)^2+200
|
extreme\:f(x)=-25(x-9)^{2}+200
|
extreme f(x)=-x^3+3x-10
|
extreme\:f(x)=-x^{3}+3x-10
|
uv
|
uv
|
inverse of f(x)=5-2x
|
inverse\:f(x)=5-2x
|
extreme y=4x+4sin(x)
|
extreme\:y=4x+4\sin(x)
|
extreme f(x,y)=x^3+y^3-147x-75y-10
|
extreme\:f(x,y)=x^{3}+y^{3}-147x-75y-10
|
extreme f(x)=x^3-4x^2-16x+2
|
extreme\:f(x)=x^{3}-4x^{2}-16x+2
|
extreme f(x)=x^3-4x^2-16x-1
|
extreme\:f(x)=x^{3}-4x^{2}-16x-1
|
f(x,y)=sqrt(400-49x^2-64y^2)
|
f(x,y)=\sqrt{400-49x^{2}-64y^{2}}
|
extreme f(x)=2xln|x|
|
extreme\:f(x)=2x\ln\left|x\right|
|
extreme f(x,y)=x^2+y^2-2x
|
extreme\:f(x,y)=x^{2}+y^{2}-2x
|
extreme f(x)=x^3+8
|
extreme\:f(x)=x^{3}+8
|
extreme f(x)=(900)/x+2pix^2
|
extreme\:f(x)=\frac{900}{x}+2πx^{2}
|
intercepts of y=5x+1
|
intercepts\:y=5x+1
|
extreme (ln(x))/(x^3)
|
extreme\:\frac{\ln(x)}{x^{3}}
|
extreme f(x)=-(25-x^2)^2
|
extreme\:f(x)=-(25-x^{2})^{2}
|
extreme f(x)=(x-3)^{4/3}
|
extreme\:f(x)=(x-3)^{\frac{4}{3}}
|
extreme-5/(x-6)
|
extreme\:-\frac{5}{x-6}
|
extreme f(x,y)=x^2-6xy+y^2+16y+9
|
extreme\:f(x,y)=x^{2}-6xy+y^{2}+16y+9
|
f(xy)=xy+4x
|
f(xy)=xy+4x
|
extreme f(x)=(3x^5-20x^3)/(32)
|
extreme\:f(x)=\frac{3x^{5}-20x^{3}}{32}
|
extreme f(x)=x+2
|
extreme\:f(x)=x+2
|
extreme f(x)=x^2-10,-3<= x<= 4
|
extreme\:f(x)=x^{2}-10,-3\le\:x\le\:4
|
extreme f(x)=|4-x^2|,-7<= x<= 7
|
extreme\:f(x)=\left|4-x^{2}\right|,-7\le\:x\le\:7
|
domain of f(x)=sqrt(x-5)+sqrt(x+1)
|
domain\:f(x)=\sqrt{x-5}+\sqrt{x+1}
|
extreme f(x)=12xy-x^3-6y^2
|
extreme\:f(x)=12xy-x^{3}-6y^{2}
|
extreme 4x^2+8xy+2y
|
extreme\:4x^{2}+8xy+2y
|
extreme f(x)=x^4-32x+2
|
extreme\:f(x)=x^{4}-32x+2
|
extreme f(x)=2cos(x)+sin(x)
|
extreme\:f(x)=2\cos(x)+\sin(x)
|
extreme f(x)=(x^3-27)/(x^2-9)
|
extreme\:f(x)=\frac{x^{3}-27}{x^{2}-9}
|
f(x,y)=3x^2+6y^2
|
f(x,y)=3x^{2}+6y^{2}
|
extreme f(x)=x^2(x^2-4)
|
extreme\:f(x)=x^{2}(x^{2}-4)
|
f(x,y)=ln(sqrt(36-4x^2-9y^2))
|
f(x,y)=\ln(\sqrt{36-4x^{2}-9y^{2}})
|
extreme f(x)= 1/3 x^3-x^2+3
|
extreme\:f(x)=\frac{1}{3}x^{3}-x^{2}+3
|
extreme f(x)= 1/3 x^3-x^2+1
|
extreme\:f(x)=\frac{1}{3}x^{3}-x^{2}+1
|
asymptotes of f(x)=(7/6)^x
|
asymptotes\:f(x)=(\frac{7}{6})^{x}
|
extreme (x+2)^2(x-3)
|
extreme\:(x+2)^{2}(x-3)
|
extreme f(x)=3cos(2x)+4
|
extreme\:f(x)=3\cos(2x)+4
|