extreme f(x)=x^2+xy+y^2-4x-2y
|
extreme\:f(x)=x^{2}+xy+y^{2}-4x-2y
|
f(x,y)= 1/(sqrt(x-y-4))
|
f(x,y)=\frac{1}{\sqrt{x-y-4}}
|
extreme f(x)=(x^3)/(x^2-36)
|
extreme\:f(x)=\frac{x^{3}}{x^{2}-36}
|
extreme f(x)=x^3-x^4
|
extreme\:f(x)=x^{3}-x^{4}
|
extreme f(x)=3+xy-x-2y
|
extreme\:f(x)=3+xy-x-2y
|
f(x,y)=x^3-3xy
|
f(x,y)=x^{3}-3xy
|
extreme f(x)=(x-1)^3+2
|
extreme\:f(x)=(x-1)^{3}+2
|
critical points of (x^2)/(x^2-16)
|
critical\:points\:\frac{x^{2}}{x^{2}-16}
|
f(y,z)=ln(1+y^2+z^2)
|
f(y,z)=\ln(1+y^{2}+z^{2})
|
extreme 3x^3-9x
|
extreme\:3x^{3}-9x
|
extreme f(x)=2x^3e^{-x},-1<= x<= 6
|
extreme\:f(x)=2x^{3}e^{-x},-1\le\:x\le\:6
|
extreme f(x)=(4x-3)^2
|
extreme\:f(x)=(4x-3)^{2}
|
y=x^2+z+z^2
|
y=x^{2}+z+z^{2}
|
extreme 3x^3-3x^2-3x+8
|
extreme\:3x^{3}-3x^{2}-3x+8
|
extreme 2x^3+3x^2-12x-4
|
extreme\:2x^{3}+3x^{2}-12x-4
|
extreme f(x)=x^2-2x-6
|
extreme\:f(x)=x^{2}-2x-6
|
extreme f(x)=x^2-2x-1
|
extreme\:f(x)=x^{2}-2x-1
|
symmetry f(x)=5x^2-3x+5
|
symmetry\:f(x)=5x^{2}-3x+5
|
asymptotes of f(x)=(6x^2+16x)/(9x+24)
|
asymptotes\:f(x)=\frac{6x^{2}+16x}{9x+24}
|
extreme f(x)=xy+8/x+8/y
|
extreme\:f(x)=xy+\frac{8}{x}+\frac{8}{y}
|
f(x,y)=ln(xy-1)
|
f(x,y)=\ln(xy-1)
|
extreme f(x,y)=*>x^3+xy^2+y^2-4y+11
|
extreme\:f(x,y)=\cdot\:>x^{3}+xy^{2}+y^{2}-4y+11
|
extreme f(x)=3x^3-6x^2+1
|
extreme\:f(x)=3x^{3}-6x^{2}+1
|
extreme f(x)=x^4-x^3-6x^2
|
extreme\:f(x)=x^{4}-x^{3}-6x^{2}
|
extreme f(x)= 1/(x^2+2x+9)
|
extreme\:f(x)=\frac{1}{x^{2}+2x+9}
|
extreme f(x)=(x-3)^4
|
extreme\:f(x)=(x-3)^{4}
|
f(x,y)=1-x-y
|
f(x,y)=1-x-y
|
extreme f(x,y)=2x^2-2x^2y+y^2
|
extreme\:f(x,y)=2x^{2}-2x^{2}y+y^{2}
|
asymptotes of f(x)=(x^2+x-20)/(x-5)
|
asymptotes\:f(x)=\frac{x^{2}+x-20}{x-5}
|
extreme f(x,y)=x^2+y^2+x^2y+5
|
extreme\:f(x,y)=x^{2}+y^{2}+x^{2}y+5
|
extreme f(x)=3x^2+5x-1
|
extreme\:f(x)=3x^{2}+5x-1
|
extreme f(x)=x^3+12x^2-27x+8,-10<= x<= 0
|
extreme\:f(x)=x^{3}+12x^{2}-27x+8,-10\le\:x\le\:0
|
extreme x^2e^{-3x}
|
extreme\:x^{2}e^{-3x}
|
extreme f(x)=4x^3-2x+3
|
extreme\:f(x)=4x^{3}-2x+3
|
f(x,y)=x^2+xy+y^2-16y+85
|
f(x,y)=x^{2}+xy+y^{2}-16y+85
|
extreme f(x)=4-5x+x^2
|
extreme\:f(x)=4-5x+x^{2}
|
extreme f(x,y)=x^2+xy+y^2-19y+120
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-19y+120
|
extreme f(x)=5-4x-x^3
|
extreme\:f(x)=5-4x-x^{3}
|
inverse of f(x)=sqrt(x^2+6x)x> 0
|
inverse\:f(x)=\sqrt{x^{2}+6x}x\gt\:0
|
extreme f(x)=x^3+6x^2-5,-5<= x<= 2
|
extreme\:f(x)=x^{3}+6x^{2}-5,-5\le\:x\le\:2
|
extreme f(x)=x^3-6x^2+12x+2
|
extreme\:f(x)=x^{3}-6x^{2}+12x+2
|
extreme f(x)=(-x^6-5x^3+5x)/(x^2+2)
|
extreme\:f(x)=\frac{-x^{6}-5x^{3}+5x}{x^{2}+2}
|
extreme f(x,y)=200y^2+x^2-x^2y
|
extreme\:f(x,y)=200y^{2}+x^{2}-x^{2}y
|
extreme 2+x-x^2
|
extreme\:2+x-x^{2}
|
extreme f(x)=x^{-1/3}(x+2)
|
extreme\:f(x)=x^{-\frac{1}{3}}(x+2)
|
f(x,y)=2x^3+2y^2-800x
|
f(x,y)=2x^{3}+2y^{2}-800x
|
extreme f(x)=3x^3-4x^2-6x+1
|
extreme\:f(x)=3x^{3}-4x^{2}-6x+1
|
f(x,y)=-6x^2-y^2+9x-5y+8
|
f(x,y)=-6x^{2}-y^{2}+9x-5y+8
|
critical points of 4x^3-3x
|
critical\:points\:4x^{3}-3x
|
extreme f(x)=x^2+(240)/x
|
extreme\:f(x)=x^{2}+\frac{240}{x}
|
extreme f(x)=6x^4-8x^3-24x^2+35
|
extreme\:f(x)=6x^{4}-8x^{3}-24x^{2}+35
|
extreme f(x)=x+(13)/x
|
extreme\:f(x)=x+\frac{13}{x}
|
extreme f(x)=(2x)/(x^2+9)
|
extreme\:f(x)=\frac{2x}{x^{2}+9}
|
extreme 2x^3-4x^2+2x+1
|
extreme\:2x^{3}-4x^{2}+2x+1
|
y=x(3t)
|
y=x(3t)
|
extreme f(x)=3x^{2/3}-2x[-1.1]
|
extreme\:f(x)=3x^{\frac{2}{3}}-2x[-1.1]
|
extreme f(x)=x^2+3x+5
|
extreme\:f(x)=x^{2}+3x+5
|
f(x,y)= 1/3 sqrt(36-4x^2-9y^2)
|
f(x,y)=\frac{1}{3}\sqrt{36-4x^{2}-9y^{2}}
|
extreme points of (x+8)/(x^2-64)
|
extreme\:points\:\frac{x+8}{x^{2}-64}
|
extreme f(x)=0.2(x^4+4x^3-16x-16)+5
|
extreme\:f(x)=0.2(x^{4}+4x^{3}-16x-16)+5
|
extreme f(x)=(3x)/(x^2+2x-8)
|
extreme\:f(x)=\frac{3x}{x^{2}+2x-8}
|
extreme f(x)=-x^7ln(3x),(0,4)
|
extreme\:f(x)=-x^{7}\ln(3x),(0,4)
|
extreme (x^2)/(-x^2+4)
|
extreme\:\frac{x^{2}}{-x^{2}+4}
|
y=x^xIn(x^5+x)
|
y=x^{x}In(x^{5}+x)
|
extreme f(x)=2x^2-4x+y^2-6y+3
|
extreme\:f(x)=2x^{2}-4x+y^{2}-6y+3
|
extreme (x+2)/(x^2-x-6)
|
extreme\:\frac{x+2}{x^{2}-x-6}
|
extreme f(x)=-4x^2+3x-2
|
extreme\:f(x)=-4x^{2}+3x-2
|
extreme (x^2-2+2)e^x
|
extreme\:(x^{2}-2+2)e^{x}
|
intercepts of y<= 2y< 8
|
intercepts\:y\le\:2y\lt\:8
|
extreme f(x)=2x^3+9x^2+12x-9
|
extreme\:f(x)=2x^{3}+9x^{2}+12x-9
|
extreme f(x,y)=7x^2-xy+10y^2
|
extreme\:f(x,y)=7x^{2}-xy+10y^{2}
|
extreme f(x)=x^3-3x^2-105x
|
extreme\:f(x)=x^{3}-3x^{2}-105x
|
extreme 1/(x-3)
|
extreme\:\frac{1}{x-3}
|
f(x)=x*y
|
f(x)=x\cdot\:y
|
f(x,y)=2x^3+x^2y^2-6x-4y^2+5
|
f(x,y)=2x^{3}+x^{2}y^{2}-6x-4y^{2}+5
|
f(x,y)=ye^{x^2-y^2}
|
f(x,y)=ye^{x^{2}-y^{2}}
|
f(x,y)= 1/3 x^3+4/3 y^3-x^2-3x-4y-3
|
f(x,y)=\frac{1}{3}x^{3}+\frac{4}{3}y^{3}-x^{2}-3x-4y-3
|
extreme f(x)=3x^4-8^3-6x^2+24x-2
|
extreme\:f(x)=3x^{4}-8^{3}-6x^{2}+24x-2
|
extreme f(x)=x^3-5x^2-8x-8
|
extreme\:f(x)=x^{3}-5x^{2}-8x-8
|
domain of f(x)=\sqrt[5]{x+1}
|
domain\:f(x)=\sqrt[5]{x+1}
|
extreme f(x)=9x+9sin(x),0<= x<= 2pi
|
extreme\:f(x)=9x+9\sin(x),0\le\:x\le\:2π
|
extreme f(x)=xe^{-4x^2}
|
extreme\:f(x)=xe^{-4x^{2}}
|
extreme y=x^{2/5}(x+3)
|
extreme\:y=x^{\frac{2}{5}}(x+3)
|
minimum f(x)=x^2+x+3
|
minimum\:f(x)=x^{2}+x+3
|
extreme x+2cos(x)
|
extreme\:x+2\cos(x)
|
extreme f(x)=-2x+3ln(4x)
|
extreme\:f(x)=-2x+3\ln(4x)
|
extreme f(x,y)=x^3-6xy+3y^2
|
extreme\:f(x,y)=x^{3}-6xy+3y^{2}
|
f(x,y)=-x^2+5y^2-7x+2y+5
|
f(x,y)=-x^{2}+5y^{2}-7x+2y+5
|
extreme f(x,y)=-x^3+4x*y-2y^2+1
|
extreme\:f(x,y)=-x^{3}+4x\cdot\:y-2y^{2}+1
|
range of sin(5x)
|
range\:\sin(5x)
|
extreme f(x)=f(x,y)=5-x^4+2x^2-y^2
|
extreme\:f(x)=f(x,y)=5-x^{4}+2x^{2}-y^{2}
|
extreme f(x)=x^4-2x^2=x^2(x^2-2)
|
extreme\:f(x)=x^{4}-2x^{2}=x^{2}(x^{2}-2)
|
extreme f(x)=x^2-9,-4<= x<= 3
|
extreme\:f(x)=x^{2}-9,-4\le\:x\le\:3
|
extreme f(x,y)=x^2y-15xy^2+12y
|
extreme\:f(x,y)=x^{2}y-15xy^{2}+12y
|
f(x,y)=3x^2y-3x^2-3y^2+y^3+2
|
f(x,y)=3x^{2}y-3x^{2}-3y^{2}+y^{3}+2
|
extreme y=x^3-3x+7
|
extreme\:y=x^{3}-3x+7
|
extreme x^4-x^3-6x^2
|
extreme\:x^{4}-x^{3}-6x^{2}
|
f(x,y)=x^2+2y^2-xy
|
f(x,y)=x^{2}+2y^{2}-xy
|
extreme f(x)=(2x^{5/2})/5-(2x^{3/2})/3-6
|
extreme\:f(x)=\frac{2x^{\frac{5}{2}}}{5}-\frac{2x^{\frac{3}{2}}}{3}-6
|
extreme f(x)=(2x^{5/2})/5-(2x^{3/2})/3-3
|
extreme\:f(x)=\frac{2x^{\frac{5}{2}}}{5}-\frac{2x^{\frac{3}{2}}}{3}-3
|