extreme f(x)=(x^3)/3-5x^2-4
|
extreme\:f(x)=\frac{x^{3}}{3}-5x^{2}-4
|
extreme f(x)=x^3-5x+2
|
extreme\:f(x)=x^{3}-5x+2
|
extreme f(x)=(x-3)e^x+3
|
extreme\:f(x)=(x-3)e^{x}+3
|
parallel y=-1/4 x+3(4,1)
|
parallel\:y=-\frac{1}{4}x+3(4,1)
|
extreme x^4+x^2
|
extreme\:x^{4}+x^{2}
|
extreme f(x)=x^7-4x^5+10
|
extreme\:f(x)=x^{7}-4x^{5}+10
|
extreme f(x)=sqrt(x^2+16)
|
extreme\:f(x)=\sqrt{x^{2}+16}
|
extreme f(x)=x^2-6x-9
|
extreme\:f(x)=x^{2}-6x-9
|
extreme f(x)=2x^3+18x^2-42x+7,-7<= x<= 2
|
extreme\:f(x)=2x^{3}+18x^{2}-42x+7,-7\le\:x\le\:2
|
extreme f(x)=(x^2+2)/(x^2-25)
|
extreme\:f(x)=\frac{x^{2}+2}{x^{2}-25}
|
f(y,z)_{y}(y,z)= 6/(y+z)
|
f(y,z)_{y}(y,z)=\frac{6}{y+z}
|
extreme f(x)=(4e^{4x})/(4x-5)
|
extreme\:f(x)=\frac{4e^{4x}}{4x-5}
|
extreme f(x)=sqrt(x+3)+6
|
extreme\:f(x)=\sqrt{x+3}+6
|
asymptotes of 5/(x-4)
|
asymptotes\:\frac{5}{x-4}
|
asymptotes of f(x)= 2/x-5
|
asymptotes\:f(x)=\frac{2}{x}-5
|
extreme f(x)=2x^2-8x+5
|
extreme\:f(x)=2x^{2}-8x+5
|
extreme f(x)=x^4(x-1)^2
|
extreme\:f(x)=x^{4}(x-1)^{2}
|
extreme (4x^2-3x^4)/(2x)
|
extreme\:\frac{4x^{2}-3x^{4}}{2x}
|
extreme f(x)=2x^3+3x^2-36x-54
|
extreme\:f(x)=2x^{3}+3x^{2}-36x-54
|
extreme f(x)=(2e^{3x})/(-3x-1)
|
extreme\:f(x)=\frac{2e^{3x}}{-3x-1}
|
extreme f(x)=-3sin(x)cos(x)
|
extreme\:f(x)=-3\sin(x)\cos(x)
|
extreme f(x)=(4x)/(x^2+1),(-4,0)
|
extreme\:f(x)=\frac{4x}{x^{2}+1},(-4,0)
|
extreme f(x)=x^2+y^2-6y+9
|
extreme\:f(x)=x^{2}+y^{2}-6y+9
|
domain of-3x+5
|
domain\:-3x+5
|
extreme f(x)=8x^{3/4}-x
|
extreme\:f(x)=8x^{\frac{3}{4}}-x
|
extreme f(x)=-5x^6ln(x)
|
extreme\:f(x)=-5x^{6}\ln(x)
|
E(a,b)=(2a+b)^2-(a+b)(a-b)
|
E(a,b)=(2a+b)^{2}-(a+b)(a-b)
|
f(x,y)=x^2-y^2+1
|
f(x,y)=x^{2}-y^{2}+1
|
extreme y=x^4-3x^2=x^2(x^2-3)
|
extreme\:y=x^{4}-3x^{2}=x^{2}(x^{2}-3)
|
extreme f(x)=x^2+y^2+x^2y+4
|
extreme\:f(x)=x^{2}+y^{2}+x^{2}y+4
|
extreme f(x)= 1/3 x^3+5x^2+24x+7
|
extreme\:f(x)=\frac{1}{3}x^{3}+5x^{2}+24x+7
|
inflection points of f(x)=3x^3-36x-9
|
inflection\:points\:f(x)=3x^{3}-36x-9
|
extreme f(x)=(x^2-16x+64)/(x-10)
|
extreme\:f(x)=\frac{x^{2}-16x+64}{x-10}
|
f(x,y)=x^2+y^2-6x+3y
|
f(x,y)=x^{2}+y^{2}-6x+3y
|
extreme f(x)=x^3+y^3-33xy
|
extreme\:f(x)=x^{3}+y^{3}-33xy
|
extreme f(x)=x^3-2x^2-15x+3
|
extreme\:f(x)=x^{3}-2x^{2}-15x+3
|
extreme f(x)=x^3-2x^2-15x+5
|
extreme\:f(x)=x^{3}-2x^{2}-15x+5
|
extreme g(x)=2x^3-3x^2-12x+13
|
extreme\:g(x)=2x^{3}-3x^{2}-12x+13
|
F(x,y)=(1+x^2+y^2)/(1-x^2-y^2)
|
F(x,y)=\frac{1+x^{2}+y^{2}}{1-x^{2}-y^{2}}
|
extreme f(x)=-2x^2-3x+5
|
extreme\:f(x)=-2x^{2}-3x+5
|
extreme 1/x+xy-8/y
|
extreme\:\frac{1}{x}+xy-\frac{8}{y}
|
intercepts of f(x)=x^2+x
|
intercepts\:f(x)=x^{2}+x
|
f(x,y)=y*ln(x)
|
f(x,y)=y\cdot\:\ln(x)
|
extreme f(x)=x^2+xy+y^2-37y+456
|
extreme\:f(x)=x^{2}+xy+y^{2}-37y+456
|
extreme f(x)=4-2(x-1)^{2/3}
|
extreme\:f(x)=4-2(x-1)^{\frac{2}{3}}
|
extreme f(x)=3x^3-3x
|
extreme\:f(x)=3x^{3}-3x
|
extreme f(x)=10+x^3-(9x^2)/2
|
extreme\:f(x)=10+x^{3}-\frac{9x^{2}}{2}
|
extreme f(x)=5x+10sin(x)
|
extreme\:f(x)=5x+10\sin(x)
|
f(x,y)=-8x^3y+2xy^2-5x^2y^5+12x
|
f(x,y)=-8x^{3}y+2xy^{2}-5x^{2}y^{5}+12x
|
extreme f(x)=9x^4-4x^3
|
extreme\:f(x)=9x^{4}-4x^{3}
|
f(x,y)=4x^2y-2x-y^2
|
f(x,y)=4x^{2}y-2x-y^{2}
|
extreme f(x)=(x^5-5x)/5
|
extreme\:f(x)=\frac{x^{5}-5x}{5}
|
intercepts of f(x)=x^3-17x^2+49x-833
|
intercepts\:f(x)=x^{3}-17x^{2}+49x-833
|
extreme f(x)=(x-3)(x+1)(x+5)
|
extreme\:f(x)=(x-3)(x+1)(x+5)
|
extreme f(x)=3-x^2
|
extreme\:f(x)=3-x^{2}
|
extreme f(x)=3x^2-7x+2
|
extreme\:f(x)=3x^{2}-7x+2
|
minimum x^2-2x+9
|
minimum\:x^{2}-2x+9
|
q(x,y)=-5x^2-8y^2-2xy+42x+102y
|
q(x,y)=-5x^{2}-8y^{2}-2xy+42x+102y
|
extreme f(x)=x^2log_{7}(x)
|
extreme\:f(x)=x^{2}\log_{7}(x)
|
U(x,y)=-x^2+8-y^2
|
U(x,y)=-x^{2}+8-y^{2}
|
extreme f(x)=2x^4+8x^2-8x^3-1
|
extreme\:f(x)=2x^{4}+8x^{2}-8x^{3}-1
|
extreme f(x)=9x^3-54x^2+81x+13,(-6,2)
|
extreme\:f(x)=9x^{3}-54x^{2}+81x+13,(-6,2)
|
range of 64-x
|
range\:64-x
|
extreme f(x)=x^3-12x^2+45x+7
|
extreme\:f(x)=x^{3}-12x^{2}+45x+7
|
extreme f(x)=x^7(x+4)^4,-10<= x<= 13
|
extreme\:f(x)=x^{7}(x+4)^{4},-10\le\:x\le\:13
|
extreme f(x)=4x^3-15x^2-18x+7
|
extreme\:f(x)=4x^{3}-15x^{2}-18x+7
|
extreme y=x^4-8x^2+5
|
extreme\:y=x^{4}-8x^{2}+5
|
extreme f(x)=(x-7)e^x
|
extreme\:f(x)=(x-7)e^{x}
|
y(x,t)=3x+2at(3.4)
|
y(x,t)=3x+2at(3.4)
|
extreme f(x)=-3(x+2)e^{4x}
|
extreme\:f(x)=-3(x+2)e^{4x}
|
extreme f(x,y)=(x^3)/3+y^2-2x+2y-2xy
|
extreme\:f(x,y)=\frac{x^{3}}{3}+y^{2}-2x+2y-2xy
|
extreme y=x^3-4x^2
|
extreme\:y=x^{3}-4x^{2}
|
range of f(x)=8x^2+1
|
range\:f(x)=8x^{2}+1
|
f(x,y)=3x^3+y^2-9x+4y
|
f(x,y)=3x^{3}+y^{2}-9x+4y
|
extreme f(x)=(-2x^2+14x-24)/(x^2+2x)
|
extreme\:f(x)=\frac{-2x^{2}+14x-24}{x^{2}+2x}
|
extreme f(x,y)=xy-x^2-y^2+x+y
|
extreme\:f(x,y)=xy-x^{2}-y^{2}+x+y
|
extreme f(x)=1-x-x^2
|
extreme\:f(x)=1-x-x^{2}
|
extreme f(x)=32y^2+x^2-x^2y
|
extreme\:f(x)=32y^{2}+x^{2}-x^{2}y
|
f(x,y)=3x^2+2xy-y^2
|
f(x,y)=3x^{2}+2xy-y^{2}
|
extreme 2x^2+3y^2-4xy+4x-2y+3
|
extreme\:2x^{2}+3y^{2}-4xy+4x-2y+3
|
extreme f(x)=sqrt(x^2+64)
|
extreme\:f(x)=\sqrt{x^{2}+64}
|
slope of 3x-5y=15
|
slope\:3x-5y=15
|
extreme y=150x-50x^2+4x^3
|
extreme\:y=150x-50x^{2}+4x^{3}
|
extreme f(x)=2x^3+1
|
extreme\:f(x)=2x^{3}+1
|
extreme 1/4 x^4-2x^3+3x^2+2
|
extreme\:\frac{1}{4}x^{4}-2x^{3}+3x^{2}+2
|
extreme f(x)=x+(16)/x ,0.2<= x<= 16
|
extreme\:f(x)=x+\frac{16}{x},0.2\le\:x\le\:16
|
extreme f(x)=3x^{5/3}-2x^{2/3}
|
extreme\:f(x)=3x^{\frac{5}{3}}-2x^{\frac{2}{3}}
|
extreme g(x)=-x^3+3x-10
|
extreme\:g(x)=-x^{3}+3x-10
|
extreme f(x)= 1/20 x^2-25sqrt(x)
|
extreme\:f(x)=\frac{1}{20}x^{2}-25\sqrt{x}
|
extreme f(x)=3x^3+9/2 x^2-54x+1
|
extreme\:f(x)=3x^{3}+\frac{9}{2}x^{2}-54x+1
|
extreme f(x)=(1-x)^2*(1+x)^3
|
extreme\:f(x)=(1-x)^{2}\cdot\:(1+x)^{3}
|
inverse of f(x)=-5cos(2x)
|
inverse\:f(x)=-5\cos(2x)
|
extreme f(x)=(x^4-5x+7)/(x^2+1)
|
extreme\:f(x)=\frac{x^{4}-5x+7}{x^{2}+1}
|
extreme f(x)=5-6x^2
|
extreme\:f(x)=5-6x^{2}
|
extreme y=(-8-8x^2)/(2sqrt(x)(1+x))
|
extreme\:y=\frac{-8-8x^{2}}{2\sqrt{x}(1+x)}
|
extreme f(t)=(e^t)/(t^2+1)
|
extreme\:f(t)=\frac{e^{t}}{t^{2}+1}
|
extreme (x+3)/(x-2)
|
extreme\:\frac{x+3}{x-2}
|
extreme 4cos(3x)+5
|
extreme\:4\cos(3x)+5
|
extreme f(x)=(e^x)/(x^8)
|
extreme\:f(x)=\frac{e^{x}}{x^{8}}
|
extreme f(x,y)=xy-x^3-y^2
|
extreme\:f(x,y)=xy-x^{3}-y^{2}
|