f(x,y)=(2x-x^2)*(2y-y^2)
|
f(x,y)=(2x-x^{2})\cdot\:(2y-y^{2})
|
extreme 4x-x^2
|
extreme\:4x-x^{2}
|
extreme f(x)=-5x^3+15x+8
|
extreme\:f(x)=-5x^{3}+15x+8
|
extreme f(x)=2x^2-10x+5
|
extreme\:f(x)=2x^{2}-10x+5
|
extreme (x+5)/(x^2-x-30)
|
extreme\:\frac{x+5}{x^{2}-x-30}
|
extreme-30x+240
|
extreme\:-30x+240
|
extreme f(x)=(x^2-12)/(x+4)
|
extreme\:f(x)=\frac{x^{2}-12}{x+4}
|
extreme f(x)= 49/2 x^2-ln(x)
|
extreme\:f(x)=\frac{49}{2}x^{2}-\ln(x)
|
extreme f(x)=4x^3e^{-x},-1<= x<= 4
|
extreme\:f(x)=4x^{3}e^{-x},-1\le\:x\le\:4
|
extreme x^4-4x^2+2
|
extreme\:x^{4}-4x^{2}+2
|
extreme (x^2-4)^7
|
extreme\:(x^{2}-4)^{7}
|
f(x,y)= 1/(sqrt(16-4x^2-y^2))
|
f(x,y)=\frac{1}{\sqrt{16-4x^{2}-y^{2}}}
|
extreme f(x)= x/(x^3-2)
|
extreme\:f(x)=\frac{x}{x^{3}-2}
|
symmetry y= 7/x
|
symmetry\:y=\frac{7}{x}
|
critical points of f(x)=(x^2)/(x^2-4)
|
critical\:points\:f(x)=\frac{x^{2}}{x^{2}-4}
|
extreme f(x)=e^{x^2+y^2-4x}
|
extreme\:f(x)=e^{x^{2}+y^{2}-4x}
|
extreme f(x,y)=(x-y^2)(x-y^3)
|
extreme\:f(x,y)=(x-y^{2})(x-y^{3})
|
extreme f(x)=x^4-18x^2+4
|
extreme\:f(x)=x^{4}-18x^{2}+4
|
extreme f(x)=49x+(16)/x
|
extreme\:f(x)=49x+\frac{16}{x}
|
extreme f(x)=x^2+10x+9
|
extreme\:f(x)=x^{2}+10x+9
|
extreme f(x)=sqrt(x)-2,0<= x<= 4
|
extreme\:f(x)=\sqrt{x}-2,0\le\:x\le\:4
|
y=7x-7z-9
|
y=7x-7z-9
|
extreme y<3x-4
|
extreme\:y<3x-4
|
extreme f(x)=2-x^4+2x^2-y^2
|
extreme\:f(x)=2-x^{4}+2x^{2}-y^{2}
|
extreme f(x)=(ln(2x))/x
|
extreme\:f(x)=\frac{\ln(2x)}{x}
|
range of f(x)=2x^2-7x-4
|
range\:f(x)=2x^{2}-7x-4
|
extreme x^4-6x^2-8x-3
|
extreme\:x^{4}-6x^{2}-8x-3
|
extreme f(x)=(1+x)/(6-x)
|
extreme\:f(x)=\frac{1+x}{6-x}
|
extreme f(x)=-x^3-x^2
|
extreme\:f(x)=-x^{3}-x^{2}
|
extreme f(x)=-x^{2/3}(x-3)
|
extreme\:f(x)=-x^{\frac{2}{3}}(x-3)
|
extreme f(x)=-x^{2/3}(x-5)
|
extreme\:f(x)=-x^{\frac{2}{3}}(x-5)
|
extreme (x^2-7x+26)/(x-5)
|
extreme\:\frac{x^{2}-7x+26}{x-5}
|
extreme f(x)=3x^3e^{-x},-1<= x<= 5
|
extreme\:f(x)=3x^{3}e^{-x},-1\le\:x\le\:5
|
extreme (x+8)^{2/3}
|
extreme\:(x+8)^{\frac{2}{3}}
|
critical points of f(x)=-x^3+2x^2+2
|
critical\:points\:f(x)=-x^{3}+2x^{2}+2
|
extreme f(x)=x^2-y^2-7x-4y
|
extreme\:f(x)=x^{2}-y^{2}-7x-4y
|
extreme f(x,y)=x^3+y^3-21xy
|
extreme\:f(x,y)=x^{3}+y^{3}-21xy
|
extreme f(x)=-3x+ln(x)
|
extreme\:f(x)=-3x+\ln(x)
|
extreme f(x)=2x^3+3x^2-36x+1
|
extreme\:f(x)=2x^{3}+3x^{2}-36x+1
|
extreme f(x)=(x+5)(x-3)^2
|
extreme\:f(x)=(x+5)(x-3)^{2}
|
extreme f(x)=x+e^{-4x}
|
extreme\:f(x)=x+e^{-4x}
|
extreme f(x)=-2x^3+9x^2-12x
|
extreme\:f(x)=-2x^{3}+9x^{2}-12x
|
extreme-(5x)/(sqrt(x^2+4))
|
extreme\:-\frac{5x}{\sqrt{x^{2}+4}}
|
extreme f(x)=x^2+6x
|
extreme\:f(x)=x^{2}+6x
|
domain of f(x)= 2/((x^2+4))
|
domain\:f(x)=\frac{2}{(x^{2}+4)}
|
extreme f(x)=x^2+5x
|
extreme\:f(x)=x^{2}+5x
|
extreme f(x)=x^5-5x^3
|
extreme\:f(x)=x^{5}-5x^{3}
|
P(x,y)=x^3(x+y)+5xy(x+y)
|
P(x,y)=x^{3}(x+y)+5xy(x+y)
|
extreme f(x)=-x^3+27x-61
|
extreme\:f(x)=-x^{3}+27x-61
|
extreme f(x)=2sec(x),-pi/3 <= x<= pi/3
|
extreme\:f(x)=2\sec(x),-\frac{π}{3}\le\:x\le\:\frac{π}{3}
|
extreme f(x)=-3x^3+3x^2-x-1
|
extreme\:f(x)=-3x^{3}+3x^{2}-x-1
|
extreme-x^3-6x^2
|
extreme\:-x^{3}-6x^{2}
|
extreme f(x,y)=x^2-xy+y^2-2x+2y
|
extreme\:f(x,y)=x^{2}-xy+y^{2}-2x+2y
|
extreme f(x)=(x^3)/(4-x^2)
|
extreme\:f(x)=\frac{x^{3}}{4-x^{2}}
|
distance (-4,-3)(2,5)
|
distance\:(-4,-3)(2,5)
|
extreme f(x)=sin^2(x),0<= x<= (2pi)/3
|
extreme\:f(x)=\sin^{2}(x),0\le\:x\le\:\frac{2π}{3}
|
extreme 3x^2e^x
|
extreme\:3x^{2}e^{x}
|
extreme f(x)=4x^{1/3}+x^{4/3}
|
extreme\:f(x)=4x^{\frac{1}{3}}+x^{\frac{4}{3}}
|
extreme f(x)= 1/6 x^3-x^2-6x+11
|
extreme\:f(x)=\frac{1}{6}x^{3}-x^{2}-6x+11
|
extreme f(x)=(ln(x))/(5x),1<= x<= 4
|
extreme\:f(x)=\frac{\ln(x)}{5x},1\le\:x\le\:4
|
extreme f(x)=x^2+y^2-6x+2
|
extreme\:f(x)=x^{2}+y^{2}-6x+2
|
Q(x,y)=xy
|
Q(x,y)=xy
|
extreme f(x)=x^3-3x^2+3x+2
|
extreme\:f(x)=x^{3}-3x^{2}+3x+2
|
extreme f(x)=(8-4x)^8
|
extreme\:f(x)=(8-4x)^{8}
|
inverse of f(x)=x^{3/5}
|
inverse\:f(x)=x^{\frac{3}{5}}
|
extreme f(x)=2x^2-8x^4
|
extreme\:f(x)=2x^{2}-8x^{4}
|
extreme f(x)=-x^{2/3}(x-3),-3<= x<= 3
|
extreme\:f(x)=-x^{\frac{2}{3}}(x-3),-3\le\:x\le\:3
|
extreme 6cos^2(x)-12sin(x)
|
extreme\:6\cos^{2}(x)-12\sin(x)
|
extreme f(x)=6x+8/x
|
extreme\:f(x)=6x+\frac{8}{x}
|
extreme x^{3/5}
|
extreme\:x^{\frac{3}{5}}
|
extreme+1/(4x-8)
|
extreme\:+\frac{1}{4x-8}
|
extreme f(x)=(8.7x+0.2)/(x^2-4.5x+7.5)
|
extreme\:f(x)=\frac{8.7x+0.2}{x^{2}-4.5x+7.5}
|
extreme f(t)=(e^t)/(t^2+1),(0,3)
|
extreme\:f(t)=\frac{e^{t}}{t^{2}+1},(0,3)
|
extreme f(x)=5x^3-5x^2-5x+7
|
extreme\:f(x)=5x^{3}-5x^{2}-5x+7
|
inverse of f(x)=-x^2+2x+3
|
inverse\:f(x)=-x^{2}+2x+3
|
extreme x^2-2x+1
|
extreme\:x^{2}-2x+1
|
f(x,y)=-x^3+8xy-6y^2+12
|
f(x,y)=-x^{3}+8xy-6y^{2}+12
|
extreme f(x,y)=x^2+xy+y^2-34y+385
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-34y+385
|
extreme (x-1)^3+2
|
extreme\:(x-1)^{3}+2
|
extreme f(x)=x^5*ln(x)
|
extreme\:f(x)=x^{5}\cdot\:\ln(x)
|
extreme f(x)=((42-x)x-(2x+80))
|
extreme\:f(x)=((42-x)x-(2x+80))
|
f(x,y)=-4x+y-1/x+1/y
|
f(x,y)=-4x+y-\frac{1}{x}+\frac{1}{y}
|
extreme f(x)=(x^2+4)/(x^2-25)
|
extreme\:f(x)=\frac{x^{2}+4}{x^{2}-25}
|
extreme f(x)=(x-8)ln(x-8)
|
extreme\:f(x)=(x-8)\ln(x-8)
|
inverse of f(x)=(-4x)/(2x-3)
|
inverse\:f(x)=\frac{-4x}{2x-3}
|
extreme f(x)=2x^2+y^2-y
|
extreme\:f(x)=2x^{2}+y^{2}-y
|
extreme f(x)=x^3+6x^2+12x+5
|
extreme\:f(x)=x^{3}+6x^{2}+12x+5
|
extreme f(x)=x^4-98x^2+4
|
extreme\:f(x)=x^{4}-98x^{2}+4
|
extreme (x+3)^2(x^3-x^2)
|
extreme\:(x+3)^{2}(x^{3}-x^{2})
|
extreme f(x)=(x+2)^3-5
|
extreme\:f(x)=(x+2)^{3}-5
|
extreme f(x)=(x-2)e^x
|
extreme\:f(x)=(x-2)e^{x}
|
extreme f(x)=6x^{2/3}
|
extreme\:f(x)=6x^{\frac{2}{3}}
|
extreme 2x^3+3x^2-72x
|
extreme\:2x^{3}+3x^{2}-72x
|
f(x,y)=4x^2-xy+9y^2
|
f(x,y)=4x^{2}-xy+9y^{2}
|
slope of Y=-5
|
slope\:Y=-5
|
extreme f(x)=200y^2+x^2-x^2y
|
extreme\:f(x)=200y^{2}+x^{2}-x^{2}y
|
extreme f(x)=x^4-4x^3-x^2+12x-2
|
extreme\:f(x)=x^{4}-4x^{3}-x^{2}+12x-2
|
extreme f(x)=5x^5-3x^2+x-10
|
extreme\:f(x)=5x^{5}-3x^{2}+x-10
|
extreme f(x)=ln(x^2+x+1),-1<= x<= 1
|
extreme\:f(x)=\ln(x^{2}+x+1),-1\le\:x\le\:1
|
extreme f(x)=x^2+xy+y^2-28y+261
|
extreme\:f(x)=x^{2}+xy+y^{2}-28y+261
|