extreme f(x)=x^3-27/2 x^2+42x+1
|
extreme\:f(x)=x^{3}-\frac{27}{2}x^{2}+42x+1
|
extreme f(x)=-2xsqrt(3-x)
|
extreme\:f(x)=-2x\sqrt{3-x}
|
inverse of f(x)= 2/3 w-8
|
inverse\:f(x)=\frac{2}{3}w-8
|
extreme f(x)=1.1x^4-5.1x^2+4.07
|
extreme\:f(x)=1.1x^{4}-5.1x^{2}+4.07
|
extreme f(x)=-x^2+4x-2
|
extreme\:f(x)=-x^{2}+4x-2
|
extreme (e^x)/(5+e^x)
|
extreme\:\frac{e^{x}}{5+e^{x}}
|
extreme f(x)=e^{7x}+e^{-x}
|
extreme\:f(x)=e^{7x}+e^{-x}
|
extreme f(x)=8x^3-x^4=x^3(8-x)
|
extreme\:f(x)=8x^{3}-x^{4}=x^{3}(8-x)
|
f(x,y)=2xy-x^3-y^2
|
f(x,y)=2xy-x^{3}-y^{2}
|
extreme f(x)=x^2+2xy+2y^2+2x-2y
|
extreme\:f(x)=x^{2}+2xy+2y^{2}+2x-2y
|
extreme f(x)=x^3-3/2 x^2,-3<= x<= 6
|
extreme\:f(x)=x^{3}-\frac{3}{2}x^{2},-3\le\:x\le\:6
|
f(x,y)=e^{2x}-x^3y^5
|
f(x,y)=e^{2x}-x^{3}y^{5}
|
extreme f(x)=3x^4+x-1
|
extreme\:f(x)=3x^{4}+x-1
|
asymptotes of f(x)= 1/(x+3)+4
|
asymptotes\:f(x)=\frac{1}{x+3}+4
|
f(x)=-2x^2
|
f(x)=-2x^{2}
|
extreme x+(108)/(x^2)
|
extreme\:x+\frac{108}{x^{2}}
|
extreme f(x)=(x^4)/4-3x^3+4x^2
|
extreme\:f(x)=\frac{x^{4}}{4}-3x^{3}+4x^{2}
|
extreme f(x)=5x-ln(x)
|
extreme\:f(x)=5x-\ln(x)
|
extreme f(x)=x^4-12x^3+16x^2+5
|
extreme\:f(x)=x^{4}-12x^{3}+16x^{2}+5
|
extreme f(x)=4x^3-2y^2-12x+8y
|
extreme\:f(x)=4x^{3}-2y^{2}-12x+8y
|
extreme f(x)=-x^3+3x-3
|
extreme\:f(x)=-x^{3}+3x-3
|
extreme f(x)=-x^3+3x^2+24x-4
|
extreme\:f(x)=-x^{3}+3x^{2}+24x-4
|
extreme x^2+4x+4
|
extreme\:x^{2}+4x+4
|
extreme f(x)=(x^2)/(ln(x))
|
extreme\:f(x)=\frac{x^{2}}{\ln(x)}
|
shift 4cos(2x+pi)
|
shift\:4\cos(2x+\pi)
|
f(x,y)=x^6+xy-2y-x+3
|
f(x,y)=x^{6}+xy-2y-x+3
|
extreme f(x)=3cos^2(x)
|
extreme\:f(x)=3\cos^{2}(x)
|
extreme f(x)=6x-7x^{6/7}
|
extreme\:f(x)=6x-7x^{\frac{6}{7}}
|
extreme-x^3
|
extreme\:-x^{3}
|
extreme f(x)=x(ln(x))^2
|
extreme\:f(x)=x(\ln(x))^{2}
|
extreme f(x)=x^3+3x^2+4
|
extreme\:f(x)=x^{3}+3x^{2}+4
|
extreme f(x)=(x/(\sqrt[3]{x^2-1)})
|
extreme\:f(x)=(\frac{x}{\sqrt[3]{x^{2}-1}})
|
extreme f(x,y)=x^2+xy+y^2+4y
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+4y
|
extreme f(x)= x/(9+x^2)
|
extreme\:f(x)=\frac{x}{9+x^{2}}
|
extreme f(x,y)=x^2+y^3-6xy+3x+6y-2
|
extreme\:f(x,y)=x^{2}+y^{3}-6xy+3x+6y-2
|
domain of f(x)=sqrt((x-2)/x)
|
domain\:f(x)=\sqrt{\frac{x-2}{x}}
|
extreme f(x)=2x^3+9x^2-24x
|
extreme\:f(x)=2x^{3}+9x^{2}-24x
|
extreme f(x,y)=2x^2-4x+y^2-8y+1
|
extreme\:f(x,y)=2x^{2}-4x+y^{2}-8y+1
|
minimum x^4-4x^2
|
minimum\:x^{4}-4x^{2}
|
extreme f(x)=(x^3)/3-6x^2
|
extreme\:f(x)=\frac{x^{3}}{3}-6x^{2}
|
extreme f(x)=-x^3+12x-14
|
extreme\:f(x)=-x^{3}+12x-14
|
extreme f(x)=200-8y=0
|
extreme\:f(x)=200-8y=0
|
extreme f(x)=(x-5)ln(x-5)
|
extreme\:f(x)=(x-5)\ln(x-5)
|
extreme f(x)=x^2+5x+6
|
extreme\:f(x)=x^{2}+5x+6
|
domain of f(x)=sqrt(-x-13)
|
domain\:f(x)=\sqrt{-x-13}
|
extreme f(x)=2sec(x)-tan(x)
|
extreme\:f(x)=2\sec(x)-\tan(x)
|
extreme f(x)=(x^2-9x+39)/(x-7)
|
extreme\:f(x)=\frac{x^{2}-9x+39}{x-7}
|
minimum 4x^2-8x+16
|
minimum\:4x^{2}-8x+16
|
extreme x+3/x
|
extreme\:x+\frac{3}{x}
|
f(x,y)=6x^2+y^3-12xy+2
|
f(x,y)=6x^{2}+y^{3}-12xy+2
|
extreme f(x)=x^2-10
|
extreme\:f(x)=x^{2}-10
|
extreme-x^3+9x^2
|
extreme\:-x^{3}+9x^{2}
|
extreme f(x)=6x^3-9x^2-108x+9
|
extreme\:f(x)=6x^{3}-9x^{2}-108x+9
|
extreme f(x)=xe^{6x}
|
extreme\:f(x)=xe^{6x}
|
periodicity of-3sin((pi)/2 x)+1
|
periodicity\:-3\sin(\frac{\pi}{2}x)+1
|
extreme f(x,y)=e^{-x^2-y^2}(x^2+2y^2)
|
extreme\:f(x,y)=e^{-x^{2}-y^{2}}(x^{2}+2y^{2})
|
extreme f(x)=x^3-27x+58
|
extreme\:f(x)=x^{3}-27x+58
|
extreme f(x)= x/(x^2-36)
|
extreme\:f(x)=\frac{x}{x^{2}-36}
|
f(x,y)=32y^2+x^2-x^2y
|
f(x,y)=32y^{2}+x^{2}-x^{2}y
|
extreme f(x)=x^4-8x^3+22x^2-24x
|
extreme\:f(x)=x^{4}-8x^{3}+22x^{2}-24x
|
extreme f(x)=-(5x^3)/3+10x^2+25x
|
extreme\:f(x)=-\frac{5x^{3}}{3}+10x^{2}+25x
|
minimum f(x)=8-3x-6x^2
|
minimum\:f(x)=8-3x-6x^{2}
|
extreme f(x)=4cos^2(x),0<= x<= pi
|
extreme\:f(x)=4\cos^{2}(x),0\le\:x\le\:π
|
minimum cos(t)
|
minimum\:\cos(t)
|
critical points of-x^2+5x+1
|
critical\:points\:-x^{2}+5x+1
|
extreme f(x)=x^4-32x^2+8
|
extreme\:f(x)=x^{4}-32x^{2}+8
|
f(x,y)=2x^3-5xy^2+4y^3
|
f(x,y)=2x^{3}-5xy^{2}+4y^{3}
|
f(x,y)=2x^2-xy+y^2-6x-9y+7
|
f(x,y)=2x^{2}-xy+y^{2}-6x-9y+7
|
extreme 12x^{2/3}-8x
|
extreme\:12x^{\frac{2}{3}}-8x
|
extreme f(x)=sqrt(9-x^2),-3<= x<= 2
|
extreme\:f(x)=\sqrt{9-x^{2}},-3\le\:x\le\:2
|
extreme f(x)= 1/x-(64)/y+xy
|
extreme\:f(x)=\frac{1}{x}-\frac{64}{y}+xy
|
extreme f(x)=x^2+8x+13
|
extreme\:f(x)=x^{2}+8x+13
|
extreme f(x)=15x^4-4x^3
|
extreme\:f(x)=15x^{4}-4x^{3}
|
extreme f(x)=x^3-5/2 x^2-2x
|
extreme\:f(x)=x^{3}-\frac{5}{2}x^{2}-2x
|
f(x)=x^2-5x+4
|
f(x)=x^{2}-5x+4
|
extreme f(x)=2+x-x^2
|
extreme\:f(x)=2+x-x^{2}
|
extreme f(x,y)=x^3-12x-y^2-8y+18
|
extreme\:f(x,y)=x^{3}-12x-y^{2}-8y+18
|
f(x)=45x+y
|
f(x)=45x+y
|
extreme f(x)=2x^3-9x^2+12x+7
|
extreme\:f(x)=2x^{3}-9x^{2}+12x+7
|
extreme f(x)=2x^3-9x^2+12x+1
|
extreme\:f(x)=2x^{3}-9x^{2}+12x+1
|
f(x,y)=xy-x^2-y^2+x+y+17
|
f(x,y)=xy-x^{2}-y^{2}+x+y+17
|
extreme f(x)=50y^2+x^2-x^2y
|
extreme\:f(x)=50y^{2}+x^{2}-x^{2}y
|
extreme f(x)=8x^{3/4}-x,0<= x<= 4096
|
extreme\:f(x)=8x^{\frac{3}{4}}-x,0\le\:x\le\:4096
|
extreme (x^2-7)/(x+4)
|
extreme\:\frac{x^{2}-7}{x+4}
|
extreme f(x)=(x^3)/3+4x^2+15x+7
|
extreme\:f(x)=\frac{x^{3}}{3}+4x^{2}+15x+7
|
inflection points of (x^3)/(x+1)
|
inflection\:points\:\frac{x^{3}}{x+1}
|
T(x,y)=(x^3+y^3)/((x+y)^2-3xy)-x
|
T(x,y)=\frac{x^{3}+y^{3}}{(x+y)^{2}-3xy}-x
|
extreme \sqrt[3]{x}
|
extreme\:\sqrt[3]{x}
|
extreme f(x)=6x-6
|
extreme\:f(x)=6x-6
|
extreme f(x)=x^2(1-x)^3
|
extreme\:f(x)=x^{2}(1-x)^{3}
|
f(x,y)=xe^{-(x^2+y^2)}
|
f(x,y)=xe^{-(x^{2}+y^{2})}
|
C(t)=6.5(e^{-at}-e^{-bt})
|
C(t)=6.5(e^{-at}-e^{-bt})
|
extreme f(x)=-x^3+3x^2+9x+2
|
extreme\:f(x)=-x^{3}+3x^{2}+9x+2
|
extreme f(x)=9x^3-7x^2+3x+10[-5.6]
|
extreme\:f(x)=9x^{3}-7x^{2}+3x+10[-5.6]
|
extreme f(x)=x^3-5x^2+8x
|
extreme\:f(x)=x^{3}-5x^{2}+8x
|
midpoint (-7,2)(3,-3)
|
midpoint\:(-7,2)(3,-3)
|
f(x,y)=ln(2x+2y)
|
f(x,y)=\ln(2x+2y)
|
extreme f(x)=x^3-2x^2-4x+4
|
extreme\:f(x)=x^{3}-2x^{2}-4x+4
|
extreme (x+1)^5-5x-2
|
extreme\:(x+1)^{5}-5x-2
|
extreme f(x)=(2x-1)/(x^2)
|
extreme\:f(x)=\frac{2x-1}{x^{2}}
|