domain of f(x)=sqrt(3x^2-6x)
|
domain\:f(x)=\sqrt{3x^{2}-6x}
|
domain of f(x)=sqrt(36-x^2)-sqrt(x+2)
|
domain\:f(x)=\sqrt{36-x^{2}}-\sqrt{x+2}
|
domain of f(x)=(x-7)/(x-5),x<7
|
domain\:f(x)=\frac{x-7}{x-5},x<7
|
domain of 7-4x
|
domain\:7-4x
|
domain of f(x)=log_{10}(1/2)(4-|x|)
|
domain\:f(x)=\log_{10}(\frac{1}{2})(4-\left|x\right|)
|
domain of f(x)=sqrt((x^3)/(x-2))
|
domain\:f(x)=\sqrt{\frac{x^{3}}{x-2}}
|
domain of f(x)=e^xsqrt(x)
|
domain\:f(x)=e^{x}\sqrt{x}
|
domain of 7/(x(x-5))
|
domain\:\frac{7}{x(x-5)}
|
domain of ((5x^2)/9)/(\frac{15x^3){27}}
|
domain\:\frac{\frac{5x^{2}}{9}}{\frac{15x^{3}}{27}}
|
domain of y=sqrt(3x-5)
|
domain\:y=\sqrt{3x-5}
|
domain of f(x)= 1/(2xsqrt(2+ln(x)))
|
domain\:f(x)=\frac{1}{2x\sqrt{2+\ln(x)}}
|
domain of f(x)=t^{2/3}-4
|
domain\:f(x)=t^{\frac{2}{3}}-4
|
domain of f(x)=e^{-1/2 x^2}
|
domain\:f(x)=e^{-\frac{1}{2}x^{2}}
|
domain of sqrt(5-5x)
|
domain\:\sqrt{5-5x}
|
domain of f(x)=-2tan(3x)+3
|
domain\:f(x)=-2\tan(3x)+3
|
domain of sin(x)2cos(x)-1,0<= x<= 2pi
|
domain\:\sin(x)2\cos(x)-1,0\le\:x\le\:2π
|
domain of x-2x^2-6
|
domain\:x-2x^{2}-6
|
amplitude of f(x)=-4sin(12x-(pi)/4)+3
|
amplitude\:f(x)=-4\sin(12x-\frac{\pi}{4})+3
|
domain of f(x)=sqrt(7x-9)
|
domain\:f(x)=\sqrt{7x-9}
|
domain of-3/2 x+1
|
domain\:-\frac{3}{2}x+1
|
domain of f(x)=(ln(x+1))/(e^x-1)
|
domain\:f(x)=\frac{\ln(x+1)}{e^{x}-1}
|
domain of f(x)=xsqrt(6-x)
|
domain\:f(x)=x\sqrt{6-x}
|
domain of sqrt(4\sqrt{(4x^2-3))-3}
|
domain\:\sqrt{4\sqrt{(4x^{2}-3)}-3}
|
domain of (4x)/(5x-6)
|
domain\:\frac{4x}{5x-6}
|
domain of f(x)=sqrt(7x-3)
|
domain\:f(x)=\sqrt{7x-3}
|
domain of f(x)= x/(x^2-4x-12)
|
domain\:f(x)=\frac{x}{x^{2}-4x-12}
|
domain of log_{10}(6)(x^2-16)
|
domain\:\log_{10}(6)(x^{2}-16)
|
domain of f(x)=(x+4)/(x+3)
|
domain\:f(x)=\frac{x+4}{x+3}
|
asymptotes of f(x)=5(x+2)
|
asymptotes\:f(x)=5(x+2)
|
domain of-x^2+2x-2
|
domain\:-x^{2}+2x-2
|
domain of y=(sqrt(2+x))/(3-x)
|
domain\:y=\frac{\sqrt{2+x}}{3-x}
|
domain of-x^2-6x+9
|
domain\:-x^{2}-6x+9
|
domain of y=-3/(x-1)
|
domain\:y=-\frac{3}{x-1}
|
domain of f(x)=5*3^x
|
domain\:f(x)=5\cdot\:3^{x}
|
domain of f(x)=(\sqrt[3]{x})/(x^2+3)
|
domain\:f(x)=\frac{\sqrt[3]{x}}{x^{2}+3}
|
domain of y=3*5^x
|
domain\:y=3\cdot\:5^{x}
|
domain of f(x)=log_{e}(9x^2-18x+18)
|
domain\:f(x)=\log_{e}(9x^{2}-18x+18)
|
domain of f(x)=ln(sqrt(5x-4))
|
domain\:f(x)=\ln(\sqrt{5x-4})
|
domain of f(x)=(x+3)/(x-9)
|
domain\:f(x)=\frac{x+3}{x-9}
|
domain of f(x)=(sqrt(5-x))/(5+x)
|
domain\:f(x)=\frac{\sqrt{5-x}}{5+x}
|
domain of f(x)=8x^2-79x+63
|
domain\:f(x)=8x^{2}-79x+63
|
domain of f(x)=2ln(-4x+7)-2
|
domain\:f(x)=2\ln(-4x+7)-2
|
domain of f(x)=sqrt(10x-25)
|
domain\:f(x)=\sqrt{10x-25}
|
domain of f(s)=sqrt(-s^2-2s+15)
|
domain\:f(s)=\sqrt{-s^{2}-2s+15}
|
domain of (7x+8)/(6x-7)
|
domain\:\frac{7x+8}{6x-7}
|
domain of \sqrt[4]{-x^2-3x+28}
|
domain\:\sqrt[4]{-x^{2}-3x+28}
|
domain of f(x)=(log_{10}(x+7))/x
|
domain\:f(x)=\frac{\log_{10}(x+7)}{x}
|
domain of ln(-x+5)
|
domain\:\ln(-x+5)
|
domain of-x^3-3x^2+4
|
domain\:-x^{3}-3x^{2}+4
|
domain of (8+7x)/(6x-7)
|
domain\:\frac{8+7x}{6x-7}
|
inverse of f(x)=(x^2-9)/(4x^2),x> 0
|
inverse\:f(x)=\frac{x^{2}-9}{4x^{2}},x\gt\:0
|
domain of x^2-4x+9
|
domain\:x^{2}-4x+9
|
domain of y=sqrt(arctan(x-3))
|
domain\:y=\sqrt{\arctan(x-3)}
|
domain of f(x)=(3x^2+5x+9)/(x^2-25)
|
domain\:f(x)=\frac{3x^{2}+5x+9}{x^{2}-25}
|
domain of 5-|3x-2|
|
domain\:5-\left|3x-2\right|
|
domain of f(x)=(-8-2x)/(5x-9)
|
domain\:f(x)=\frac{-8-2x}{5x-9}
|
domain of f(x)=x^3-8x+3
|
domain\:f(x)=x^{3}-8x+3
|
domain of y=sqrt(3x+4)
|
domain\:y=\sqrt{3x+4}
|
domain of y=(2/3)^x
|
domain\:y=(\frac{2}{3})^{x}
|
slope intercept of 2x=10-3y
|
slope\:intercept\:2x=10-3y
|
domain of f(x)= 4/(x-6)+4/(x-1)
|
domain\:f(x)=\frac{4}{x-6}+\frac{4}{x-1}
|
domain of f(x)=8x^{-29/12},x>0
|
domain\:f(x)=8x^{-\frac{29}{12}},x>0
|
domain of 3t^3
|
domain\:3t^{3}
|
domain of f(x)=sqrt((x-1)(x-2))
|
domain\:f(x)=\sqrt{(x-1)(x-2)}
|
domain of y=sqrt(t-16)
|
domain\:y=\sqrt{t-16}
|
domain of f(x)=arcsin(-y)
|
domain\:f(x)=\arcsin(-y)
|
domain of f(x)= 1/(sqrt(2x)-4)
|
domain\:f(x)=\frac{1}{\sqrt{2x}-4}
|
domain of e^{x+3}+4
|
domain\:e^{x+3}+4
|
domain of (x^2-3)/(5x^2+2x+1)
|
domain\:\frac{x^{2}-3}{5x^{2}+2x+1}
|
domain of f(x)=16x^2
|
domain\:f(x)=16x^{2}
|
domain of f(x)=x^2+8,x>= 0
|
domain\:f(x)=x^{2}+8,x\ge\:0
|
domain of (ln(x-2)-3)/4
|
domain\:\frac{\ln(x-2)-3}{4}
|
domain of (8x-12)/(4+3x)
|
domain\:\frac{8x-12}{4+3x}
|
domain of y=(3x^2+5x+9)/(x^2-25)
|
domain\:y=\frac{3x^{2}+5x+9}{x^{2}-25}
|
domain of 3x^2-30x+77
|
domain\:3x^{2}-30x+77
|
domain of (x-1)+(4x^2)
|
domain\:(x-1)+(4x^{2})
|
domain of f(x)=|x+2|+4,-5<= x<= 2
|
domain\:f(x)=\left|x+2\right|+4,-5\le\:x\le\:2
|
domain of f(x)= 1/(64-25x^2)
|
domain\:f(x)=\frac{1}{64-25x^{2}}
|
domain of y=(x-5)/(x^2-9)
|
domain\:y=\frac{x-5}{x^{2}-9}
|
slope of 2x+5y=4
|
slope\:2x+5y=4
|
domain of f(x)= 6/(x^2-21x+98)
|
domain\:f(x)=\frac{6}{x^{2}-21x+98}
|
domain of f(x)=(x+3)/(x+4)
|
domain\:f(x)=\frac{x+3}{x+4}
|
domain of 16-2x-x^2
|
domain\:16-2x-x^{2}
|
domain of e^{-7x}
|
domain\:e^{-7x}
|
domain of f(x)=x^3-5
|
domain\:f(x)=x^{3}-5
|
domain of f(x)=(2(x+6))/(3x)
|
domain\:f(x)=\frac{2(x+6)}{3x}
|
domain of h(x)= x/2+2/x
|
domain\:h(x)=\frac{x}{2}+\frac{2}{x}
|
domain of f(x)=sqrt(1-x)+sqrt(x^2-2x-3)
|
domain\:f(x)=\sqrt{1-x}+\sqrt{x^{2}-2x-3}
|
domain of f(x)=y=log_{2}(8x)
|
domain\:f(x)=y=\log_{2}(8x)
|
domain of f(x)=4x^2-5
|
domain\:f(x)=4x^{2}-5
|
domain of (sqrt(2x+5))/(sqrt(x^3-8))
|
domain\:\frac{\sqrt{2x+5}}{\sqrt{x^{3}-8}}
|
domain of 2/(r^2+1)
|
domain\:\frac{2}{r^{2}+1}
|
domain of f(x)=4x^2+7
|
domain\:f(x)=4x^{2}+7
|
domain of f(x)=-3(sqrt(x+7))-7
|
domain\:f(x)=-3(\sqrt{x+7})-7
|
domain of 4x^3-12x^2
|
domain\:4x^{3}-12x^{2}
|
domain of y=-sqrt(2-x)+1
|
domain\:y=-\sqrt{2-x}+1
|
domain of f(x)=(sqrt(x+3))/(1-sqrt(x+2))
|
domain\:f(x)=\frac{\sqrt{x+3}}{1-\sqrt{x+2}}
|
domain of ln(x)+6
|
domain\:\ln(x)+6
|
inverse of f(x)=(2+sqrt((x+6)^2))/(3-x)
|
inverse\:f(x)=\frac{2+\sqrt{(x+6)^{2}}}{3-x}
|
domain of y=-2x^2+3
|
domain\:y=-2x^{2}+3
|