domain of f(x)= 9/(x+11)
|
domain\:f(x)=\frac{9}{x+11}
|
domain of f(x)=(9x)/(4x-1)
|
domain\:f(x)=\frac{9x}{4x-1}
|
domain of f(x)=-0.0625t^2+3t-20
|
domain\:f(x)=-0.0625t^{2}+3t-20
|
domain of (x+10)/(x^2-100)
|
domain\:\frac{x+10}{x^{2}-100}
|
domain of sqrt(6-2x)
|
domain\:\sqrt{6-2x}
|
domain of (sqrt(9-x^2))/(3x-1)
|
domain\:\frac{\sqrt{9-x^{2}}}{3x-1}
|
domain of ln(x^2-4)+pi
|
domain\:\ln(x^{2}-4)+π
|
domain of y=(x^2)/(x-6)
|
domain\:y=\frac{x^{2}}{x-6}
|
line (2,1)(5,7)
|
line\:(2,1)(5,7)
|
domain of (x^2-4x-5)-(x^2+3x+2)
|
domain\:(x^{2}-4x-5)-(x^{2}+3x+2)
|
domain of f(x)=12(x-8)(x-6)
|
domain\:f(x)=12(x-8)(x-6)
|
domain of f(x)=(sqrt(x+3)}{\frac{x+4)/2}
|
domain\:f(x)=\frac{\sqrt{x+3}}{\frac{x+4}{2}}
|
domain of f(x)= 1/(9x+6)
|
domain\:f(x)=\frac{1}{9x+6}
|
domain of f(x)=sqrt((x+6)/((x-2)(x+3)))
|
domain\:f(x)=\sqrt{\frac{x+6}{(x-2)(x+3)}}
|
domain of f(x)=(x^2+2)/(x-7)
|
domain\:f(x)=\frac{x^{2}+2}{x-7}
|
domain of f(x)=(2x+2)/(3x+10)
|
domain\:f(x)=\frac{2x+2}{3x+10}
|
domain of (x^2-2x+6)/((x^2+2)(x-2))
|
domain\:\frac{x^{2}-2x+6}{(x^{2}+2)(x-2)}
|
line m=infinity ,\at (3,2)
|
line\:m=\infty\:,\at\:(3,2)
|
domain of f(x)=3*x^{2/3}-2x
|
domain\:f(x)=3\cdot\:x^{\frac{2}{3}}-2x
|
domain of f(x)=log_{10}(2/3 x-4)
|
domain\:f(x)=\log_{10}(\frac{2}{3}x-4)
|
domain of yx^2-25y-x=0
|
domain\:yx^{2}-25y-x=0
|
domain of f(x)= 1/(sqrt(4-2x))
|
domain\:f(x)=\frac{1}{\sqrt{4-2x}}
|
domain of ((-2x-7))/(9x-5)
|
domain\:\frac{(-2x-7)}{9x-5}
|
domain of f(x)=6x-52x-9
|
domain\:f(x)=6x-52x-9
|
domain of (x+7)^3+2
|
domain\:(x+7)^{3}+2
|
domain of f(x)= 1/(2x+11)
|
domain\:f(x)=\frac{1}{2x+11}
|
domain of f(x)= 1/(9x^2+69x+130)
|
domain\:f(x)=\frac{1}{9x^{2}+69x+130}
|
slope of f(x)= 4/5 x-4
|
slope\:f(x)=\frac{4}{5}x-4
|
domain of f(x)=log_{3}(2+6x)
|
domain\:f(x)=\log_{3}(2+6x)
|
domain of x=b^y
|
domain\:x=b^{y}
|
domain of f(x)= x/(x^2+6)
|
domain\:f(x)=\frac{x}{x^{2}+6}
|
domain of (x+6)/(x^2-4)
|
domain\:\frac{x+6}{x^{2}-4}
|
domain of 3^x+2
|
domain\:3^{x}+2
|
domain of 4/(1-3(1/x))
|
domain\:\frac{4}{1-3(\frac{1}{x})}
|
parallel y=2x-3(-6,5)
|
parallel\:y=2x-3(-6,5)
|
domain of f(x)=((x+4))/(-(x-1)-1)
|
domain\:f(x)=\frac{(x+4)}{-(x-1)-1}
|
domain of 6x+sin(3x)
|
domain\:6x+\sin(3x)
|
domain of (2x+3)^{1.4}
|
domain\:(2x+3)^{1.4}
|
domain of sqrt(x-13)
|
domain\:\sqrt{x-13}
|
domain of (3x-12)/4
|
domain\:\frac{3x-12}{4}
|
domain of f(x)=3^{x+2}+2
|
domain\:f(x)=3^{x+2}+2
|
domain of f(x)=(x-2)/(x^2+81)
|
domain\:f(x)=\frac{x-2}{x^{2}+81}
|
domain of f(x)= 2/3 sqrt(12-3x)
|
domain\:f(x)=\frac{2}{3}\sqrt{12-3x}
|
domain of g(x)=log_{10}(8)x^2
|
domain\:g(x)=\log_{10}(8)x^{2}
|
inverse of f(x)= 5/4 x-5/2
|
inverse\:f(x)=\frac{5}{4}x-\frac{5}{2}
|
domain of f(x)=-(8x-14)/7
|
domain\:f(x)=-\frac{8x-14}{7}
|
domain of sqrt(6-x)-sqrt(3x-9)
|
domain\:\sqrt{6-x}-\sqrt{3x-9}
|
domain of f(x)=(3x+9)/(x^2-x-6)
|
domain\:f(x)=\frac{3x+9}{x^{2}-x-6}
|
domain of f(x)=f(x)=2sqrt(x-3)+5
|
domain\:f(x)=f(x)=2\sqrt{x-3}+5
|
domain of f(x)=(2x+1)/(2x-6)
|
domain\:f(x)=\frac{2x+1}{2x-6}
|
domain of-(2x)/(x^2+1)
|
domain\:-\frac{2x}{x^{2}+1}
|
domain of f(x)=(x+4)/(x^2-49)
|
domain\:f(x)=\frac{x+4}{x^{2}-49}
|
domain of f(x)=-log_{10}(3x-2)+3
|
domain\:f(x)=-\log_{10}(3x-2)+3
|
domain of x^{0.5}
|
domain\:x^{0.5}
|
domain of f(x)=(x^2-4)/(x+2)
|
domain\:f(x)=\frac{x^{2}-4}{x+2}
|
domain of y=((x+1)^3)/((x-1)^2)
|
domain\:y=\frac{(x+1)^{3}}{(x-1)^{2}}
|
domain of f(3)=sqrt(x+1)+4
|
domain\:f(3)=\sqrt{x+1}+4
|
domain of f(x)=(|x|)/(sqrt(x^2-9))
|
domain\:f(x)=\frac{\left|x\right|}{\sqrt{x^{2}-9}}
|
domain of f(x)=8.9x+8.3
|
domain\:f(x)=8.9x+8.3
|
domain of f(x)=((x^2-4x+4))/((x+2))
|
domain\:f(x)=\frac{(x^{2}-4x+4)}{(x+2)}
|
domain of f(x)=xy^2+xy-6x-3=0
|
domain\:f(x)=xy^{2}+xy-6x-3=0
|
domain of f(x)=((x-8))/((x+2))
|
domain\:f(x)=\frac{(x-8)}{(x+2)}
|
domain of f(x)=(3-x)/(x+2)
|
domain\:f(x)=\frac{3-x}{x+2}
|
domain of 1/(3x+4)
|
domain\:\frac{1}{3x+4}
|
domain of f(x)=ln(2e^x-1)
|
domain\:f(x)=\ln(2e^{x}-1)
|
f(x)=sqrt(x-1)
|
f(x)=\sqrt{x-1}
|
domain of 1/(3x+1)
|
domain\:\frac{1}{3x+1}
|
domain of f(x)=sqrt((x^2-16)/(x^2-3x))
|
domain\:f(x)=\sqrt{\frac{x^{2}-16}{x^{2}-3x}}
|
domain of f(x)=sin(x)+sqrt(x)
|
domain\:f(x)=\sin(x)+\sqrt{x}
|
domain of f(x)=log_{10}(2x-200)
|
domain\:f(x)=\log_{10}(2x-200)
|
domain of f(x)=x^3-5x^2+6x
|
domain\:f(x)=x^{3}-5x^{2}+6x
|
domain of (25-e^{x^2})/(1-e^{25-x^2)}
|
domain\:\frac{25-e^{x^{2}}}{1-e^{25-x^{2}}}
|
domain of f(x)=sqrt((x-7)/(x^2))
|
domain\:f(x)=\sqrt{\frac{x-7}{x^{2}}}
|
domain of 2/(x+1)+(x/(x+1))
|
domain\:\frac{2}{x+1}+(\frac{x}{x+1})
|
domain of (sqrt(16-x))^4
|
domain\:(\sqrt{16-x})^{4}
|
domain of f(x)=x^2-8
|
domain\:f(x)=x^{2}-8
|
domain of f(x)= x/(ln(-x-2))
|
domain\:f(x)=\frac{x}{\ln(-x-2)}
|
domain of f(x)=(sqrt(4-x^2))/(x(x^2-9))
|
domain\:f(x)=\frac{\sqrt{4-x^{2}}}{x(x^{2}-9)}
|
domain of f(x)=2sqrt(x+4)-3
|
domain\:f(x)=2\sqrt{x+4}-3
|
domain of f(x)=\sqrt[3]{5x^3+40}
|
domain\:f(x)=\sqrt[3]{5x^{3}+40}
|
domain of f(x)=(1x^2+4)/(x+6)
|
domain\:f(x)=\frac{1x^{2}+4}{x+6}
|
domain of f(x)=sqrt(1/x-2)
|
domain\:f(x)=\sqrt{\frac{1}{x}-2}
|
domain of 9x+6
|
domain\:9x+6
|
domain of ((-x+sqrt((9x^2+8x))))/(2x)
|
domain\:\frac{(-x+\sqrt{(9x^{2}+8x)})}{2x}
|
domain of 2(pi)(r^2)+12(pi)(r)
|
domain\:2(π)(r^{2})+12(π)(r)
|
extreme points of f(x)=3x^2+4x-15
|
extreme\:points\:f(x)=3x^{2}+4x-15
|
domain of x^3+2x+5
|
domain\:x^{3}+2x+5
|
domain of f(x)= 1/((x-1)(x+3))
|
domain\:f(x)=\frac{1}{(x-1)(x+3)}
|
domain of f(x)=(x-4)/(sqrt(x-1)+2)
|
domain\:f(x)=\frac{x-4}{\sqrt{x-1}+2}
|
domain of f(x)=5^{2x-1}-2
|
domain\:f(x)=5^{2x-1}-2
|
domain of x^3+2x-3
|
domain\:x^{3}+2x-3
|
domain of f(x)=(3x(x+3))/((x-2)(x-5))
|
domain\:f(x)=\frac{3x(x+3)}{(x-2)(x-5)}
|
domain of 9x-3
|
domain\:9x-3
|
domain of ((x-1))/2
|
domain\:\frac{(x-1)}{2}
|
domain of f(x)=(x^2+x+1)^{-3/2}
|
domain\:f(x)=(x^{2}+x+1)^{-\frac{3}{2}}
|
domain of f(x)=\sqrt[4]{x^4-16}
|
domain\:f(x)=\sqrt[4]{x^{4}-16}
|
parity f(x)=x^2+2
|
parity\:f(x)=x^{2}+2
|
domain of f(x)=2-x
|
domain\:f(x)=2-x
|
domain of f(x)=-1/2 x
|
domain\:f(x)=-\frac{1}{2}x
|
domain of f(x)= 1/(sqrt(6x^2-18x-60))
|
domain\:f(x)=\frac{1}{\sqrt{6x^{2}-18x-60}}
|