symmetry (x^2-2x-1)/(x+1)
|
symmetry\:\frac{x^{2}-2x-1}{x+1}
|
line (1,0)(0,-1)
|
line\:(1,0)(0,-1)
|
intercepts f(x)=(x+1)^2(x-3)^5(x-2)
|
intercepts\:f(x)=(x+1)^{2}(x-3)^{5}(x-2)
|
midpoint (-1,-9)(4,-7)
|
midpoint\:(-1,-9)(4,-7)
|
inverse y=3^{2x+4}+3
|
inverse\:y=3^{2x+4}+3
|
intercepts f(x)=-3x^2+6x-1
|
intercepts\:f(x)=-3x^{2}+6x-1
|
domain f(t)=((1-e^{-2t})/t)
|
domain\:f(t)=(\frac{1-e^{-2t}}{t})
|
inverse y=3^x-1
|
inverse\:y=3^{x}-1
|
asymptotes f(x)=x^4-2x^2-8
|
asymptotes\:f(x)=x^{4}-2x^{2}-8
|
distance (3,4),(11,17)
|
distance\:(3,4),(11,17)
|
domain f(x)=2sqrt(x)-x
|
domain\:f(x)=2\sqrt{x}-x
|
range sqrt((x-1)/(4x+3))
|
range\:\sqrt{\frac{x-1}{4x+3}}
|
asymptotes f(x)=(x^2)/(x^4-81)
|
asymptotes\:f(x)=\frac{x^{2}}{x^{4}-81}
|
parity 7tan(1.55-0.31t)dt
|
parity\:7\tan(1.55-0.31t)dt
|
midpoint (8,10)(2,6)
|
midpoint\:(8,10)(2,6)
|
asymptotes f(x)=(sqrt(1-x^2))/(2x+1)
|
asymptotes\:f(x)=\frac{\sqrt{1-x^{2}}}{2x+1}
|
domain f(x)=(sqrt(x+4))/(x-3)
|
domain\:f(x)=\frac{\sqrt{x+4}}{x-3}
|
slope intercept 1x+1y=2
|
slope\:intercept\:1x+1y=2
|
extreme points f(x)=x^2-3x-2
|
extreme\:points\:f(x)=x^{2}-3x-2
|
domain f(x)= 5/(x-8)
|
domain\:f(x)=\frac{5}{x-8}
|
asymptotes f(x)=(2x+3)/(x+4)
|
asymptotes\:f(x)=\frac{2x+3}{x+4}
|
critical points 8x^{1/3}+x^{4/3}
|
critical\:points\:8x^{\frac{1}{3}}+x^{\frac{4}{3}}
|
critical points f(x)=(x^2-7)/(16-x^2)
|
critical\:points\:f(x)=\frac{x^{2}-7}{16-x^{2}}
|
intercepts f(x)=2x^2-5x+1
|
intercepts\:f(x)=2x^{2}-5x+1
|
domain 4/(x^2+x-2)
|
domain\:\frac{4}{x^{2}+x-2}
|
extreme points-sqrt(9-x^2)
|
extreme\:points\:-\sqrt{9-x^{2}}
|
intercepts-2(x-3)^2+7
|
intercepts\:-2(x-3)^{2}+7
|
inverse f(x)=(x^5+10)/3
|
inverse\:f(x)=\frac{x^{5}+10}{3}
|
intercepts f(x)=2x-4
|
intercepts\:f(x)=2x-4
|
inverse f(x)=6-8x
|
inverse\:f(x)=6-8x
|
domain f(x)=(2x-1)^2
|
domain\:f(x)=(2x-1)^{2}
|
domain f(x)=sqrt(x-1)+sqrt(x-2)
|
domain\:f(x)=\sqrt{x-1}+\sqrt{x-2}
|
range 6/(x+1)
|
range\:\frac{6}{x+1}
|
domain f(x)= 1/(|4-8x|+12)
|
domain\:f(x)=\frac{1}{|4-8x|+12}
|
line (1,6)(5,-2)
|
line\:(1,6)(5,-2)
|
intercepts f(x)=x^2+8x=-11
|
intercepts\:f(x)=x^{2}+8x=-11
|
inflection points f(x)= 1/(x-2)
|
inflection\:points\:f(x)=\frac{1}{x-2}
|
domain f(x)=sqrt(36-x^2)-sqrt(x+1)
|
domain\:f(x)=\sqrt{36-x^{2}}-\sqrt{x+1}
|
line (3.58,1.413)(4,12.88)
|
line\:(3.58,1.413)(4,12.88)
|
monotone intervals (x^2+6)(36-x^2)
|
monotone\:intervals\:(x^{2}+6)(36-x^{2})
|
range f(x)=2x^2-6x+5
|
range\:f(x)=2x^{2}-6x+5
|
critical points f(x)=(x-2)(x-5)^{(3)}+11
|
critical\:points\:f(x)=(x-2)(x-5)^{(3)}+11
|
periodicity f(x)=6sin((4pi)/3 x)+1
|
periodicity\:f(x)=6\sin(\frac{4\pi}{3}x)+1
|
inverse h(x)=2x^3+3
|
inverse\:h(x)=2x^{3}+3
|
domain f(x)=(x+8)^2
|
domain\:f(x)=(x+8)^{2}
|
inflection points f(x)=-3x^3+245x^2-3100x+15000
|
inflection\:points\:f(x)=-3x^{3}+245x^{2}-3100x+15000
|
domain f(x)=(sqrt(x+39))/(x-3)
|
domain\:f(x)=\frac{\sqrt{x+39}}{x-3}
|
domain f(x)=log_{5}(x+3)
|
domain\:f(x)=\log_{5}(x+3)
|
slope 3x-5y=8
|
slope\:3x-5y=8
|
range x/(x+4)
|
range\:\frac{x}{x+4}
|
domain (6x+7)/(5x-6)
|
domain\:\frac{6x+7}{5x-6}
|
asymptotes f(x)= 5/x
|
asymptotes\:f(x)=\frac{5}{x}
|
inverse f(x)=x^2-18x
|
inverse\:f(x)=x^{2}-18x
|
inverse f(x)=600+70x
|
inverse\:f(x)=600+70x
|
slope-x+4y=20
|
slope\:-x+4y=20
|
domain f(x)=sqrt(t-36)
|
domain\:f(x)=\sqrt{t-36}
|
critical points f(x)=(x+6)/(x+2)
|
critical\:points\:f(x)=\frac{x+6}{x+2}
|
domain f(x)=(x+5)/(x^2-25)
|
domain\:f(x)=\frac{x+5}{x^{2}-25}
|
range f(x)=4^{x-5}
|
range\:f(x)=4^{x-5}
|
domain 2(1/2)^x-2
|
domain\:2(\frac{1}{2})^{x}-2
|
extreme points x^3-6x^2+9x+2
|
extreme\:points\:x^{3}-6x^{2}+9x+2
|
domain-sqrt(x)+4
|
domain\:-\sqrt{x}+4
|
symmetry-2(x+5)^2+8
|
symmetry\:-2(x+5)^{2}+8
|
perpendicular y=-2/3 x+1
|
perpendicular\:y=-\frac{2}{3}x+1
|
intercepts f(x)=3x-5y=6
|
intercepts\:f(x)=3x-5y=6
|
inverse f(x)=(x+2)/(x+7)
|
inverse\:f(x)=\frac{x+2}{x+7}
|
critical points f(x)=x^4+8x^3-14x^2+3
|
critical\:points\:f(x)=x^{4}+8x^{3}-14x^{2}+3
|
domain 11-x
|
domain\:11-x
|
slope y= 1/3 x+4
|
slope\:y=\frac{1}{3}x+4
|
range 4(1/5)^x
|
range\:4(\frac{1}{5})^{x}
|
domain 117x^4-78x^3
|
domain\:117x^{4}-78x^{3}
|
inverse (6x)/(7x-3)
|
inverse\:\frac{6x}{7x-3}
|
inverse f(x)=(x+8)^{1/5}
|
inverse\:f(x)=(x+8)^{\frac{1}{5}}
|
asymptotes f(x)=(x+1)/(x^2-2x+3)
|
asymptotes\:f(x)=\frac{x+1}{x^{2}-2x+3}
|
parity f(x)=e^x
|
parity\:f(x)=e^{x}
|
inverse x^2+2x+3
|
inverse\:x^{2}+2x+3
|
range f(x)=(2x^3+3)/(x^3-1)
|
range\:f(x)=\frac{2x^{3}+3}{x^{3}-1}
|
extreme points f(x)=x^3-4x^2-16x+9
|
extreme\:points\:f(x)=x^{3}-4x^{2}-16x+9
|
critical points f(x)=2sqrt(x)-4x
|
critical\:points\:f(x)=2\sqrt{x}-4x
|
domain f(x)=sqrt(x-1)+1
|
domain\:f(x)=\sqrt{x-1}+1
|
domain f(x)=sqrt(x)+sqrt((1-x))
|
domain\:f(x)=\sqrt{x}+\sqrt{(1-x)}
|
monotone intervals y=(x^2)/((x-2)^2)
|
monotone\:intervals\:y=\frac{x^{2}}{(x-2)^{2}}
|
slope-2x-1
|
slope\:-2x-1
|
perpendicular y= 1/8 x+2,\at (1,-5)
|
perpendicular\:y=\frac{1}{8}x+2,\at\:(1,-5)
|
asymptotes f(x)=(1+e^{-x})/(2e^x)
|
asymptotes\:f(x)=\frac{1+e^{-x}}{2e^{x}}
|
domain sqrt(x+1)-1/(x^2+1)
|
domain\:\sqrt{x+1}-\frac{1}{x^{2}+1}
|
extreme points sqrt(1-x^2)
|
extreme\:points\:\sqrt{1-x^{2}}
|
midpoint (-4,6)(8,-6)
|
midpoint\:(-4,6)(8,-6)
|
intercepts f(x)=(x^2-1)/(x-2)
|
intercepts\:f(x)=\frac{x^{2}-1}{x-2}
|
inverse h(x)=\sqrt[3]{x-3}
|
inverse\:h(x)=\sqrt[3]{x-3}
|
intercepts f(x)=x^6-7x^3-8
|
intercepts\:f(x)=x^{6}-7x^{3}-8
|
line 2x+3y=5
|
line\:2x+3y=5
|
asymptotes f(x)=(x-2)/(x^2+1)
|
asymptotes\:f(x)=\frac{x-2}{x^{2}+1}
|
inverse 2+\sqrt[3]{2-3x}
|
inverse\:2+\sqrt[3]{2-3x}
|
domain f(x)=0<= x<= 10
|
domain\:f(x)=0\le\:x\le\:10
|
symmetry y=-(x-5)^2-3
|
symmetry\:y=-(x-5)^{2}-3
|
domain f(x)= 2/(4-3x+x^2)
|
domain\:f(x)=\frac{2}{4-3x+x^{2}}
|
parity x(sec^2(2x)*2)
|
parity\:x(\sec^{2}(2x)\cdot\:2)
|
domain f(x)= 5/(2sqrt(x))
|
domain\:f(x)=\frac{5}{2\sqrt{x}}
|
midpoint (-1,5)(7,9)
|
midpoint\:(-1,5)(7,9)
|