domain of x/(sqrt(3-|x^2-1|))
|
domain\:\frac{x}{\sqrt{3-\left|x^{2}-1\right|}}
|
domain of f(x)= x/(\sqrt[3]{3-x)}
|
domain\:f(x)=\frac{x}{\sqrt[3]{3-x}}
|
domain of f(x)=3sqrt(4x-2)+7
|
domain\:f(x)=3\sqrt{4x-2}+7
|
domain of y=log_{10}(3+3x)
|
domain\:y=\log_{10}(3+3x)
|
domain of f(x)=y=3x+1
|
domain\:f(x)=y=3x+1
|
domain of f(x)= 1/(sqrt(0))
|
domain\:f(x)=\frac{1}{\sqrt{0}}
|
domain of (15)/(11w)
|
domain\:\frac{15}{11w}
|
domain of f(x)=5+sqrt(3-x)
|
domain\:f(x)=5+\sqrt{3-x}
|
range of 3/5 sqrt(x-3)-3
|
range\:\frac{3}{5}\sqrt{x-3}-3
|
line (2,-9),(-7,8)
|
line\:(2,-9),(-7,8)
|
domain of f(x)=(e^x)/(x^2-2x)
|
domain\:f(x)=\frac{e^{x}}{x^{2}-2x}
|
domain of ((2x+1))/3
|
domain\:\frac{(2x+1)}{3}
|
domain of (2x+5)/(x^3-81x)
|
domain\:\frac{2x+5}{x^{3}-81x}
|
domain of f(x)=(1-4x)/(6+x)
|
domain\:f(x)=\frac{1-4x}{6+x}
|
domain of 2/(x^2)
|
domain\:\frac{2}{x^{2}}
|
domain of f(x)=3+sqrt(x-2)
|
domain\:f(x)=3+\sqrt{x-2}
|
domain of f(x)=e^{4x}
|
domain\:f(x)=e^{4x}
|
domain of f(x)=3x^2-5x
|
domain\:f(x)=3x^{2}-5x
|
domain of ((x-7)^2(5-x))/(sqrt(x+1)-1)
|
domain\:\frac{(x-7)^{2}(5-x)}{\sqrt{x+1}-1}
|
domain of f(x)= 1/(1-2cos(x))
|
domain\:f(x)=\frac{1}{1-2\cos(x)}
|
midpoint (9,5)(-1,9)
|
midpoint\:(9,5)(-1,9)
|
domain of F(x)=10x+4
|
domain\:F(x)=10x+4
|
domain of sqrt(8-7x)
|
domain\:\sqrt{8-7x}
|
domain of v(x)=sqrt(x-6)
|
domain\:v(x)=\sqrt{x-6}
|
domain of f(x)=(2x-5)/(6x-2)
|
domain\:f(x)=\frac{2x-5}{6x-2}
|
domain of f(x)=log_{10}(|x^2-1|)
|
domain\:f(x)=\log_{10}(\left|x^{2}-1\right|)
|
domain of f(x)=(x-7)(x-9)
|
domain\:f(x)=(x-7)(x-9)
|
domain of f(x)= x/(x^4-1)
|
domain\:f(x)=\frac{x}{x^{4}-1}
|
domain of f(x)=2+sqrt(x+1)
|
domain\:f(x)=2+\sqrt{x+1}
|
domain of f(x)=(x^4)/(x^2-11x+30)
|
domain\:f(x)=\frac{x^{4}}{x^{2}-11x+30}
|
domain of ln(-x^2+4x)
|
domain\:\ln(-x^{2}+4x)
|
inverse of f(x)=1650(1.022)^t
|
inverse\:f(x)=1650(1.022)^{t}
|
domain of y=(x^2-1)/(x^2+3x+1)
|
domain\:y=\frac{x^{2}-1}{x^{2}+3x+1}
|
domain of f(x)=(x^2-4x)/(x^2-9)
|
domain\:f(x)=\frac{x^{2}-4x}{x^{2}-9}
|
domain of (sqrt(x-1))/(sqrt(x-4))
|
domain\:\frac{\sqrt{x-1}}{\sqrt{x-4}}
|
domain of f(x)=((x+1))/((x+1)*(2x-3))
|
domain\:f(x)=\frac{(x+1)}{(x+1)\cdot\:(2x-3)}
|
domain of y= x/(sqrt(x^2+2x+2))
|
domain\:y=\frac{x}{\sqrt{x^{2}+2x+2}}
|
domain of sqrt(x^2+3x)-x
|
domain\:\sqrt{x^{2}+3x}-x
|
domain of f(x)=2+sqrt(x+2)
|
domain\:f(x)=2+\sqrt{x+2}
|
domain of f(x)=log_{2}(x-6)
|
domain\:f(x)=\log_{2}(x-6)
|
domain of f(x)=((x-3))/((2x^2+10x))
|
domain\:f(x)=\frac{(x-3)}{(2x^{2}+10x)}
|
domain of f(x)=|x-2|-|x+2|
|
domain\:f(x)=\left|x-2\right|-\left|x+2\right|
|
domain of sqrt(6-x^2)
|
domain\:\sqrt{6-x^{2}}
|
domain of 1/(20x^2)
|
domain\:\frac{1}{20x^{2}}
|
domain of f(x)=(2x^2+10x+8)/(x-2)
|
domain\:f(x)=\frac{2x^{2}+10x+8}{x-2}
|
domain of f(x)= x/(|x|+1)
|
domain\:f(x)=\frac{x}{\left|x\right|+1}
|
domain of (5+7x)/(x-1)
|
domain\:\frac{5+7x}{x-1}
|
domain of f(x)=((x+4))/((x^2-16))
|
domain\:f(x)=\frac{(x+4)}{(x^{2}-16)}
|
domain of f(x)= 5/(x-3)+sqrt(x^2-3x-28)
|
domain\:f(x)=\frac{5}{x-3}+\sqrt{x^{2}-3x-28}
|
domain of f(x)= x/(x^2+7x+12)
|
domain\:f(x)=\frac{x}{x^{2}+7x+12}
|
domain of-3x*log_{10}(x+8)
|
domain\:-3x\cdot\:\log_{10}(x+8)
|
domain of f(x)=ln|2x-4|
|
domain\:f(x)=\ln\left|2x-4\right|
|
critical points of (7x+6)/(5x^{3/5)}
|
critical\:points\:\frac{7x+6}{5x^{\frac{3}{5}}}
|
domain of f(x)=sqrt(t^2-16)
|
domain\:f(x)=\sqrt{t^{2}-16}
|
domain of f(x)=sqrt(14-7x)
|
domain\:f(x)=\sqrt{14-7x}
|
domain of f(x)=7x^2+5x-3
|
domain\:f(x)=7x^{2}+5x-3
|
domain of f(x)= 3/(x^2-x-12)
|
domain\:f(x)=\frac{3}{x^{2}-x-12}
|
domain of x^{5/7}-8
|
domain\:x^{\frac{5}{7}}-8
|
domain of f(x)=(x+6)/(x^2-2x-48)
|
domain\:f(x)=\frac{x+6}{x^{2}-2x-48}
|
domain of f(x)=800-2(300)-y
|
domain\:f(x)=800-2(300)-y
|
domain of f(x)= 1/(\sqrt[3]{7-2x)}
|
domain\:f(x)=\frac{1}{\sqrt[3]{7-2x}}
|
domain of f(x)=(x+4)/(x-10)
|
domain\:f(x)=\frac{x+4}{x-10}
|
domain of-15x^2+350x-2000
|
domain\:-15x^{2}+350x-2000
|
domain of 2x^2
|
domain\:2x^{2}
|
domain of f(x)=1-sec(2x)*csc(2x)
|
domain\:f(x)=1-\sec(2x)\cdot\:\csc(2x)
|
domain of f(x)=2-log_{5}(x^2)
|
domain\:f(x)=2-\log_{5}(x^{2})
|
domain of (x^2+x+1)/(x^2+2x+1)
|
domain\:\frac{x^{2}+x+1}{x^{2}+2x+1}
|
domain of f(x)=(x^2+7x+12)/(x^4-5x^2+4)
|
domain\:f(x)=\frac{x^{2}+7x+12}{x^{4}-5x^{2}+4}
|
domain of f(x)= x/(x+9)
|
domain\:f(x)=\frac{x}{x+9}
|
domain of y=x^2+5x+6
|
domain\:y=x^{2}+5x+6
|
domain of f(x)=y=(x+1)/(sqrt(x))
|
domain\:f(x)=y=\frac{x+1}{\sqrt{x}}
|
domain of f(x)=sqrt(3x+2)-1
|
domain\:f(x)=\sqrt{3x+2}-1
|
domain of V(x)=4x^3-100x^2+600x
|
domain\:V(x)=4x^{3}-100x^{2}+600x
|
domain of f(x)=x^3-6x^2
|
domain\:f(x)=x^{3}-6x^{2}
|
slope intercept of m=5,(9,8)
|
slope\:intercept\:m=5,(9,8)
|
domain of f(x)=-5x^4-x^3+22x^2+4x-8
|
domain\:f(x)=-5x^{4}-x^{3}+22x^{2}+4x-8
|
domain of 3*x^{2/3-2x}
|
domain\:3\cdot\:x^{\frac{2}{3}-2x}
|
domain of f(x)=(5-x)/(x^2-25)
|
domain\:f(x)=\frac{5-x}{x^{2}-25}
|
domain of f(x)=(2-3x)/(12-|x-12|)
|
domain\:f(x)=\frac{2-3x}{12-\left|x-12\right|}
|
domain of f(x)=((4x+7)-4)/((4x+7)+1)
|
domain\:f(x)=\frac{(4x+7)-4}{(4x+7)+1}
|
domain of arcsin(4x)
|
domain\:\arcsin(4x)
|
domain of f(x)=-(12)/(sqrt(x+4))
|
domain\:f(x)=-\frac{12}{\sqrt{x+4}}
|
domain of-5x^2-30x-42
|
domain\:-5x^{2}-30x-42
|
domain of f(x)= 4/(x-9)
|
domain\:f(x)=\frac{4}{x-9}
|
line (-4,5)(-8,5)
|
line\:(-4,5)(-8,5)
|
domain of x^2+4x-2
|
domain\:x^{2}+4x-2
|
domain of f(x)= 1/(\sqrt[4]{x^2-5)}
|
domain\:f(x)=\frac{1}{\sqrt[4]{x^{2}-5}}
|
domain of x^2-8x-9
|
domain\:x^{2}-8x-9
|
domain of f(x)= 1/3-2x
|
domain\:f(x)=\frac{1}{3}-2x
|
domain of f(x)=-2x(x-2)(x-6)
|
domain\:f(x)=-2x(x-2)(x-6)
|
domain of f(x)=sqrt((-10)/(5+x))
|
domain\:f(x)=\sqrt{\frac{-10}{5+x}}
|
domain of 2pi
|
domain\:2π
|
domain of f(x)=sqrt(0.5*(-3.75))-2/8
|
domain\:f(x)=\sqrt{0.5\cdot\:(-3.75)}-\frac{2}{8}
|
domain of (4x)/(sqrt(x^2+16))
|
domain\:\frac{4x}{\sqrt{x^{2}+16}}
|
domain of ln(x^2-x)
|
domain\:\ln(x^{2}-x)
|
line 2x+y=5
|
line\:2x+y=5
|
domain of g(x)= 3/(3x-1)
|
domain\:g(x)=\frac{3}{3x-1}
|
domain of g(x)= 4/(ln(\frac{x^2){4})}
|
domain\:g(x)=\frac{4}{\ln(\frac{x^{2}}{4})}
|
domain of f(x)=log_{10}(1-2x)
|
domain\:f(x)=\log_{10}(1-2x)
|
domain of f(x)=(-2x)/(x^4-72x^2+1296)
|
domain\:f(x)=\frac{-2x}{x^{4}-72x^{2}+1296}
|