domain of f(x)= 1/(3x+2)
|
domain\:f(x)=\frac{1}{3x+2}
|
domain of f(x)=(sin(x)+1)/(x-1)
|
domain\:f(x)=\frac{\sin(x)+1}{x-1}
|
domain of y=4^{x+1}
|
domain\:y=4^{x+1}
|
domain of sqrt(-5x+1)
|
domain\:\sqrt{-5x+1}
|
domain of (x-3)/(x-1)
|
domain\:\frac{x-3}{x-1}
|
domain of f(x)=(sqrt(x+7))/(x-4)
|
domain\:f(x)=\frac{\sqrt{x+7}}{x-4}
|
domain of 2^{x+1}-8
|
domain\:2^{x+1}-8
|
domain of f(x)= 1/((x^2-4))
|
domain\:f(x)=\frac{1}{(x^{2}-4)}
|
domain of f(x)=x^3-12
|
domain\:f(x)=x^{3}-12
|
domain of f(x)=(2x-1)/(x^2+9x)
|
domain\:f(x)=\frac{2x-1}{x^{2}+9x}
|
domain of y=2^{-x}-7
|
domain\:y=2^{-x}-7
|
domain of f(x)=4^{x-3}
|
domain\:f(x)=4^{x-3}
|
domain of x^2+(16)/x
|
domain\:x^{2}+\frac{16}{x}
|
inverse of g(x)=(-x-5)/3
|
inverse\:g(x)=\frac{-x-5}{3}
|
domain of f(x)=2tan(2x)
|
domain\:f(x)=2\tan(2x)
|
domain of 1-sqrt(ln^2(x)+1)
|
domain\:1-\sqrt{\ln^{2}(x)+1}
|
domain of 1/(sqrt(2x-1))
|
domain\:\frac{1}{\sqrt{2x-1}}
|
domain of (3x-5)/2
|
domain\:\frac{3x-5}{2}
|
domain of (sqrt(2x+120))/(ln(5x-20))
|
domain\:\frac{\sqrt{2x+120}}{\ln(5x-20)}
|
domain of g(x)=\sqrt[3]{x-2}
|
domain\:g(x)=\sqrt[3]{x-2}
|
domain of f(x)=(7x+2)/(x^2-9)
|
domain\:f(x)=\frac{7x+2}{x^{2}-9}
|
domain of (sqrt(4-x^2))/(2-x)
|
domain\:\frac{\sqrt{4-x^{2}}}{2-x}
|
domain of (5-7x)/(2x+3)
|
domain\:\frac{5-7x}{2x+3}
|
shift 4sin(6x-pi)
|
shift\:4\sin(6x-\pi)
|
domain of g(x)=log_{4}(x+2)
|
domain\:g(x)=\log_{4}(x+2)
|
domain of sqrt(81-x^2)
|
domain\:\sqrt{81-x^{2}}
|
domain of 1/3 log_{10}(2x)
|
domain\:\frac{1}{3}\log_{10}(2x)
|
domain of 1/(9-x^2)
|
domain\:\frac{1}{9-x^{2}}
|
domain of f(x)=15x
|
domain\:f(x)=15x
|
domain of y=tanh(3x)
|
domain\:y=\tanh(3x)
|
domain of sqrt(-x^2+2x+3)
|
domain\:\sqrt{-x^{2}+2x+3}
|
domain of (x-2)^{1/2}
|
domain\:(x-2)^{\frac{1}{2}}
|
domain of f(x)=sqrt(12-4x)
|
domain\:f(x)=\sqrt{12-4x}
|
domain of f(x)=(-4-5x)/(3x-1)
|
domain\:f(x)=\frac{-4-5x}{3x-1}
|
domain of f(x)=(2x-3)/(x+3)
|
domain\:f(x)=\frac{2x-3}{x+3}
|
domain of-2^{-x}+6
|
domain\:-2^{-x}+6
|
domain of y=-10
|
domain\:y=-10
|
domain of (x-4)/(x-5)
|
domain\:\frac{x-4}{x-5}
|
domain of (sqrt(5-x))/(4(-x+2))
|
domain\:\frac{\sqrt{5-x}}{4(-x+2)}
|
domain of f(x)=(x^2-11x+18)/(x-8)
|
domain\:f(x)=\frac{x^{2}-11x+18}{x-8}
|
domain of (9x-2)x^3
|
domain\:(9x-2)x^{3}
|
domain of f(x)=x^4+3
|
domain\:f(x)=x^{4}+3
|
domain of U(x)=9x-1620
|
domain\:U(x)=9x-1620
|
domain of (sqrt(x^2-9))/(x^2+2x-8)
|
domain\:\frac{\sqrt{x^{2}-9}}{x^{2}+2x-8}
|
domain of f(x)=sqrt(3x^2+5)
|
domain\:f(x)=\sqrt{3x^{2}+5}
|
domain of 1/(1+e^{-2x)}
|
domain\:\frac{1}{1+e^{-2x}}
|
domain of 5/(sqrt(x-4))
|
domain\:\frac{5}{\sqrt{x-4}}
|
domain of f(x)=(sqrt(x-1))/x
|
domain\:f(x)=\frac{\sqrt{x-1}}{x}
|
domain of f(x)=(x^2+1)/(2x+2)
|
domain\:f(x)=\frac{x^{2}+1}{2x+2}
|
domain of y= 4/(\frac{2){x-1}+3}
|
domain\:y=\frac{4}{\frac{2}{x-1}+3}
|
domain of (3x+1)/5
|
domain\:\frac{3x+1}{5}
|
domain of f(x)=x^3+3x^2
|
domain\:f(x)=x^{3}+3x^{2}
|
domain of f(x)=sqrt(x-3)+1
|
domain\:f(x)=\sqrt{x-3}+1
|
inverse of f(x)=(1-4x)/(2x+7)
|
inverse\:f(x)=\frac{1-4x}{2x+7}
|
domain of f(x)=(sqrt(2x+1))/(x^2+1)
|
domain\:f(x)=\frac{\sqrt{2x+1}}{x^{2}+1}
|
domain of f(x)=((x+9))/(x^2-81)
|
domain\:f(x)=\frac{(x+9)}{x^{2}-81}
|
domain of f(x)=sqrt(-5x^2+5)
|
domain\:f(x)=\sqrt{-5x^{2}+5}
|
domain of f(x)=1-1/(x^2)
|
domain\:f(x)=1-\frac{1}{x^{2}}
|
domain of y=0.3(x-4)^2-7.5
|
domain\:y=0.3(x-4)^{2}-7.5
|
domain of 7/(7x)
|
domain\:\frac{7}{7x}
|
domain of (sqrt(-x+5))/(-4x+8)
|
domain\:\frac{\sqrt{-x+5}}{-4x+8}
|
domain of y=(x^2-4x+3)/(x-1)
|
domain\:y=\frac{x^{2}-4x+3}{x-1}
|
distance (1.5,4.5)(1,3)
|
distance\:(1.5,4.5)(1,3)
|
slope of 9
|
slope\:9
|
domain of f(x)=sqrt(1-2x)-sqrt(3-2x-x^2)
|
domain\:f(x)=\sqrt{1-2x}-\sqrt{3-2x-x^{2}}
|
domain of f(x)=sqrt(175x^2-x)
|
domain\:f(x)=\sqrt{175x^{2}-x}
|
domain of (2x)/(x^2+3x)
|
domain\:\frac{2x}{x^{2}+3x}
|
domain of f(x)=sec(x)-pi/2 <x< pi/2
|
domain\:f(x)=\sec(x)-\frac{π}{2}<x<\frac{π}{2}
|
domain of y^3=x
|
domain\:y^{3}=x
|
domain of f(x)=(x+1)/(x^2+x-2)
|
domain\:f(x)=\frac{x+1}{x^{2}+x-2}
|
domain of f(x)=4x^2+4x-2
|
domain\:f(x)=4x^{2}+4x-2
|
domain of f(x)=3x^4-4x^3-12x^2
|
domain\:f(x)=3x^{4}-4x^{3}-12x^{2}
|
domain of (x/(x-1))/(1/(3-x))
|
domain\:\frac{\frac{x}{x-1}}{\frac{1}{3-x}}
|
domain of f(x)={x+1,x<0}
|
domain\:f(x)=\left\{x+1,x<0\right\}
|
range of-sqrt(1/x)-1
|
range\:-\sqrt{\frac{1}{x}}-1
|
domain of-2.3
|
domain\:-2.3
|
domain of f(x)=ln(sqrt(2x+1))
|
domain\:f(x)=\ln(\sqrt{2x+1})
|
domain of (x+9)/((x-1)(x-7))
|
domain\:\frac{x+9}{(x-1)(x-7)}
|
domain of sqrt(8x)
|
domain\:\sqrt{8x}
|
domain of f(x)=2(x+6)^2+5
|
domain\:f(x)=2(x+6)^{2}+5
|
domain of f(x)=sqrt(-x/(x-1))
|
domain\:f(x)=\sqrt{-\frac{x}{x-1}}
|
domain of 8x-5
|
domain\:8x-5
|
domain of f(x)= 4/(x^2+x-2)
|
domain\:f(x)=\frac{4}{x^{2}+x-2}
|
domain of f(x)=0.38x+5
|
domain\:f(x)=0.38x+5
|
domain of g(x)=-2x^2-3,x<= 2
|
domain\:g(x)=-2x^{2}-3,x\le\:2
|
monotone intervals (x-3)e^{9x-3}
|
monotone\:intervals\:(x-3)e^{9x-3}
|
domain of f(x)=sqrt((4-x^2))
|
domain\:f(x)=\sqrt{(4-x^{2})}
|
domain of (x^2+2)/(x^2+4x+4)
|
domain\:\frac{x^{2}+2}{x^{2}+4x+4}
|
domain of f(x)=3x(x-3)^3
|
domain\:f(x)=3x(x-3)^{3}
|
domain of f(x)=(2.6)
|
domain\:f(x)=(2.6)
|
domain of ((x/(x+5)))/((x/(x+5))+5)
|
domain\:\frac{(\frac{x}{x+5})}{(\frac{x}{x+5})+5}
|
domain of f(x)=20x-(60)/x f(a)=10
|
domain\:f(x)=20x-\frac{60}{x}f(a)=10
|
domain of f(x)= 1/(sqrt(2x))
|
domain\:f(x)=\frac{1}{\sqrt{2x}}
|
domain of sqrt(x-5)+3
|
domain\:\sqrt{x-5}+3
|
domain of f(x)=2x^3-6x^2
|
domain\:f(x)=2x^{3}-6x^{2}
|
domain of f(x)=-x+7,-3<= x<= 9
|
domain\:f(x)=-x+7,-3\le\:x\le\:9
|
critical points of f(x)=3xsqrt(4x^2+3)
|
critical\:points\:f(x)=3x\sqrt{4x^{2}+3}
|
domain of 500(0.04-x^2)
|
domain\:500(0.04-x^{2})
|
domain of f(t)=-2/t
|
domain\:f(t)=-\frac{2}{t}
|
domain of f(x)= 3/(1-2^{x^2-x+5)}
|
domain\:f(x)=\frac{3}{1-2^{x^{2}-x+5}}
|