Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=4x^3
inverse\:f(x)=4x^{3}
domain of f(x)=e^{-x}-1
domain\:f(x)=e^{-x}-1
extreme f(x)=2-7x^2
extreme\:f(x)=2-7x^{2}
critical f(x)=3x^5-5x^3
critical\:f(x)=3x^{5}-5x^{3}
extreme f(x)=2=x^3-x
extreme\:f(x)=2=x^{3}-x
domain of (4x^2-10)/((x-8)(x+6))
domain\:\frac{4x^{2}-10}{(x-8)(x+6)}
domain of f(x)=x^2-12x+5
domain\:f(x)=x^{2}-12x+5
amplitude of 4sin(3x+pi)
amplitude\:4\sin(3x+π)
extreme f(x)=((ln(x)))/x
extreme\:f(x)=\frac{(\ln(x))}{x}
y=x^2-4x+3
y=x^{2}-4x+3
domain of f(x)=-sqrt(36-x^2)
domain\:f(x)=-\sqrt{36-x^{2}}
asymptotes of f(x)=(x^2+5x+1)/(x^2-6x-1)
asymptotes\:f(x)=\frac{x^{2}+5x+1}{x^{2}-6x-1}
parity f(x)=x^3-2x
parity\:f(x)=x^{3}-2x
asymptotes of f(x)=-4/(x+5)
asymptotes\:f(x)=-\frac{4}{x+5}
inverse of f(x)=12(x-3)^2-4
inverse\:f(x)=12(x-3)^{2}-4
parity cot(x)dx
parity\:\cot(x)dx
domain of f(x)= x/(sqrt(x^2-3x-4))
domain\:f(x)=\frac{x}{\sqrt{x^{2}-3x-4}}
inverse of f(x)=((x+3))/((x-5))
inverse\:f(x)=\frac{(x+3)}{(x-5)}
slope of 3y=3x+6
slope\:3y=3x+6
midpoint (1,-1),(-10,2)
midpoint\:(1,-1),(-10,2)
intercepts of y=x^3-216
intercepts\:y=x^{3}-216
domain of (\sqrt[8]{x-2})/(log_{4)(5-x)}
domain\:\frac{\sqrt[8]{x-2}}{\log_{4}(5-x)}
domain of f(x)=(x-6)/(x^2+12x+36)
domain\:f(x)=\frac{x-6}{x^{2}+12x+36}
domain of y=sqrt(8x+1)
domain\:y=\sqrt{8x+1}
line (3,1),(4,5)
line\:(3,1),(4,5)
asymptotes of (3x^2-7x-20)/(3x^2+13x+4)
asymptotes\:\frac{3x^{2}-7x-20}{3x^{2}+13x+4}
domain of f(x)= 1/(sqrt(x+36))
domain\:f(x)=\frac{1}{\sqrt{x+36}}
midpoint (-1,-1),(-7,-9)
midpoint\:(-1,-1),(-7,-9)
slope ofintercept y=-2x
slopeintercept\:y=-2x
critical f(x)=(x^2-36)^{1/3}
critical\:f(x)=(x^{2}-36)^{\frac{1}{3}}
symmetry y=x^2-8x+12
symmetry\:y=x^{2}-8x+12
extreme f(x)=x^4-2x^3
extreme\:f(x)=x^{4}-2x^{3}
simplify (-6.13)(6)
simplify\:(-6.13)(6)
distance (-4,4),(-2,-4)
distance\:(-4,4),(-2,-4)
inverse of f(x)=4x^3+7
inverse\:f(x)=4x^{3}+7
critical ((e^x))/(5+e^x)
critical\:\frac{(e^{x})}{5+e^{x}}
domain of sqrt(5x-4)
domain\:\sqrt{5x-4}
range of ln(x)+2
range\:\ln(x)+2
domain of f(x)=-5x^2-7
domain\:f(x)=-5x^{2}-7
range of f(x)=(x^2-2x-3)/(x+2)
range\:f(x)=\frac{x^{2}-2x-3}{x+2}
inflection f(x)=(x-2)^3
inflection\:f(x)=(x-2)^{3}
midpoint (5,6),(-3,-9)
midpoint\:(5,6),(-3,-9)
critical (3x)/(4-x^2)
critical\:\frac{3x}{4-x^{2}}
line (150,147.3),(165,162.7)
line\:(150,147.3),(165,162.7)
domain of f(x)=sqrt(-x)-3
domain\:f(x)=\sqrt{-x}-3
range of 2/(t^2-16)
range\:\frac{2}{t^{2}-16}
inverse of f(x)=7x+7
inverse\:f(x)=7x+7
slope ofintercept 2x-y=3
slopeintercept\:2x-y=3
domain of f(x)=sqrt((-x+5)/(x^2-1))
domain\:f(x)=\sqrt{\frac{-x+5}{x^{2}-1}}
asymptotes of f(x)=6^{x-2}+1
asymptotes\:f(x)=6^{x-2}+1
range of sqrt(x+4)
range\:\sqrt{x+4}
intercepts of 2x^3-4x^2-14x+28
intercepts\:2x^{3}-4x^{2}-14x+28
domain of (sqrt(4-x^2))/(sqrt(x+1))
domain\:\frac{\sqrt{4-x^{2}}}{\sqrt{x+1}}
inverse of f(x)=sqrt(8x)
inverse\:f(x)=\sqrt{8x}
asymptotes of f(x)=(x^2-x-12)/x
asymptotes\:f(x)=\frac{x^{2}-x-12}{x}
intercepts of y= 1/5 x+3
intercepts\:y=\frac{1}{5}x+3
intercepts of x^2+x-6
intercepts\:x^{2}+x-6
domain of f(x)=(3x-4)/(sqrt(x^2+4x-77))
domain\:f(x)=\frac{3x-4}{\sqrt{x^{2}+4x-77}}
symmetry y=x^9
symmetry\:y=x^{9}
inverse of y=\sqrt[3]{x+2}-5
inverse\:y=\sqrt[3]{x+2}-5
asymptotes of arcsin(x)
asymptotes\:\arcsin(x)
perpendicular y= 3/4 x-2
perpendicular\:y=\frac{3}{4}x-2
domain of f(x)=x+sqrt(4-x^2)
domain\:f(x)=x+\sqrt{4-x^{2}}
inverse of \sqrt[3]{x-7}
inverse\:\sqrt[3]{x-7}
intercepts of f(x)=x^2-8x+12
intercepts\:f(x)=x^{2}-8x+12
domain of f(x)=(sqrt(x+8))/(x-1)
domain\:f(x)=\frac{\sqrt{x+8}}{x-1}
domain of sqrt((x^2-1)/(x^2+5x+6))
domain\:\sqrt{\frac{x^{2}-1}{x^{2}+5x+6}}
asymptotes of h(x)= 1/(x^2-1)
asymptotes\:h(x)=\frac{1}{x^{2}-1}
domain of sin(7x)
domain\:\sin(7x)
simplify (11.13)(8.17)
simplify\:(11.13)(8.17)
amplitude of y=2cos(2pi(x+(2pi)/3))-5
amplitude\:y=2\cos(2π(x+\frac{2π}{3}))-5
perpendicular 5x+2y=4
perpendicular\:5x+2y=4
inverse of f(x)=6x
inverse\:f(x)=6x
extreme f(x)=(x+3)^{6/7}
extreme\:f(x)=(x+3)^{\frac{6}{7}}
domain of f(x)=sqrt(5-5x)
domain\:f(x)=\sqrt{5-5x}
inverse of f(x)=(x-6)/(-3x)
inverse\:f(x)=\frac{x-6}{-3x}
asymptotes of f(x)=(4x)/(x^2-9)
asymptotes\:f(x)=\frac{4x}{x^{2}-9}
critical y=(9x-12)/(5x^{1/5)}
critical\:y=\frac{9x-12}{5x^{\frac{1}{5}}}
range of (4x^2-4)/(x+4)
range\:\frac{4x^{2}-4}{x+4}
line (0,9),(4.5,0)
line\:(0,9),(4.5,0)
domain of f(x)=sqrt((x-4)/(2x-5))
domain\:f(x)=\sqrt{\frac{x-4}{2x-5}}
inverse of f(x)=42.82819x-20.43748
inverse\:f(x)=42.82819x-20.43748
asymptotes of f(x)=5csc(1/2 pix+1/6 pi)
asymptotes\:f(x)=5\csc(\frac{1}{2}πx+\frac{1}{6}π)
domain of f(x)=x^2+5x+4
domain\:f(x)=x^{2}+5x+4
domain of xe^x
domain\:xe^{x}
range of sqrt(25-x^2),-5<= x<5
range\:\sqrt{25-x^{2}},-5\le\:x<5
inverse of pi+arcsin(2x-1)
inverse\:π+\arcsin(2x-1)
domain of f(x)=log_{2}(2-|1-x|)
domain\:f(x)=\log_{2}(2-\left|1-x\right|)
parity tan(arcos((sqrt(2))/2))
parity\:\tan(ar\cos(\frac{\sqrt{2}}{2}))
domain of f(x)=-|x-3|+2
domain\:f(x)=-\left|x-3\right|+2
domain of f(x)=\sqrt[4]{x}
domain\:f(x)=\sqrt[4]{x}
domain of (sqrt(4x-7))/(4x^2-15x+14)
domain\:\frac{\sqrt{4x-7}}{4x^{2}-15x+14}
domain of f(x)=(x^2-1)/(x-3)
domain\:f(x)=\frac{x^{2}-1}{x-3}
domain of f(x)=(2x+3)/(x-1)
domain\:f(x)=\frac{2x+3}{x-1}
inverse of f(x)=x^7-1
inverse\:f(x)=x^{7}-1
domain of (6x)/(x^2+2)
domain\:\frac{6x}{x^{2}+2}
domain of f(x)= 3/(x^2-16)
domain\:f(x)=\frac{3}{x^{2}-16}
range of f(x)=7-sqrt(x)
range\:f(x)=7-\sqrt{x}
extreme f(x)=(x+2)^2(x-1)
extreme\:f(x)=(x+2)^{2}(x-1)
domain of f(x)=(x^2)/(x^2+3)
domain\:f(x)=\frac{x^{2}}{x^{2}+3}
1
..
237
238
239
240
241
..
1324