Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inflection (2x-1)/(x^2)
inflection\:\frac{2x-1}{x^{2}}
inflection (x^2+x+1)/x
inflection\:\frac{x^{2}+x+1}{x}
symmetry-2(x-6)^2-4
symmetry\:-2(x-6)^{2}-4
inverse of f(x)=(sqrt(2x-3))/5
inverse\:f(x)=\frac{\sqrt{2x-3}}{5}
inverse of f(x)=e^{2x-7}
inverse\:f(x)=e^{2x-7}
inverse of f(x)=11x^3-5
inverse\:f(x)=11x^{3}-5
shift f(t)=cos(1/2 t+pi/3)-pi/6
shift\:f(t)=\cos(\frac{1}{2}t+\frac{π}{3})-\frac{π}{6}
range of f(x)=csc(x)
range\:f(x)=\csc(x)
inverse of ln(e^x-3)
inverse\:\ln(e^{x}-3)
slope of (5.5)-1/4
slope\:(5.5)-\frac{1}{4}
intercepts of f(x)=y^2=8x+5
intercepts\:f(x)=y^{2}=8x+5
distance (-2,0),(1,1)
distance\:(-2,0),(1,1)
asymptotes of f(x)=(x^2-2x-15)/(x^2-4x-21)
asymptotes\:f(x)=\frac{x^{2}-2x-15}{x^{2}-4x-21}
parallel x+6y=-12
parallel\:x+6y=-12
inverse of f(x)=((2x+3))/(x-1)
inverse\:f(x)=\frac{(2x+3)}{x-1}
amplitude of sin(2x-pi)
amplitude\:\sin(2x-π)
asymptotes of f(x)=(x^3+8)/(x^2+7x)
asymptotes\:f(x)=\frac{x^{3}+8}{x^{2}+7x}
midpoint (9,-3),(-2,-2)
midpoint\:(9,-3),(-2,-2)
parity 2x^2-x-1
parity\:2x^{2}-x-1
domain of sqrt(2-x/(x-3))
domain\:\sqrt{2-\frac{x}{x-3}}
asymptotes of f(x)=(x^2-49)/(x(x-7))
asymptotes\:f(x)=\frac{x^{2}-49}{x(x-7)}
domain of f(x)=x^2+8x
domain\:f(x)=x^{2}+8x
inverse of y=4x-3
inverse\:y=4x-3
range of sin(6x),0<= x<= 2pi
range\:\sin(6x),0\le\:x\le\:2π
midpoint (5,-7),(8,1)
midpoint\:(5,-7),(8,1)
intercepts of-x^2-3x+4
intercepts\:-x^{2}-3x+4
domain of f(x)=-3x^2+6x+4
domain\:f(x)=-3x^{2}+6x+4
intercepts of f(x)=2(x-6)^2+2
intercepts\:f(x)=2(x-6)^{2}+2
domain of f(x)=(sqrt(x))/(5x^2+4x-1)
domain\:f(x)=\frac{\sqrt{x}}{5x^{2}+4x-1}
asymptotes of ln(x+1)
asymptotes\:\ln(x+1)
midpoint (6,1),(-2,-5)
midpoint\:(6,1),(-2,-5)
domain of f(x)= x/(x^2-x-6)
domain\:f(x)=\frac{x}{x^{2}-x-6}
inverse of ((7e^x-6))/(e^x+8)
inverse\:\frac{(7e^{x}-6)}{e^{x}+8}
slope ofintercept 3x-5y=10
slopeintercept\:3x-5y=10
intercepts of f(x)=2x^2+12x-2
intercepts\:f(x)=2x^{2}+12x-2
inverse of f(x)=18500(0.64-x^2)
inverse\:f(x)=18500(0.64-x^{2})
asymptotes of f(x)= 1/x
asymptotes\:f(x)=\frac{1}{x}
inverse of f(x)= 3/((4-x^2))
inverse\:f(x)=\frac{3}{(4-x^{2})}
inverse of f(x)= 2/5 x+2
inverse\:f(x)=\frac{2}{5}x+2
asymptotes of f(x)=(2+x^2)/(x^2-36)
asymptotes\:f(x)=\frac{2+x^{2}}{x^{2}-36}
range of (3x+6)/(-6x+2)
range\:\frac{3x+6}{-6x+2}
asymptotes of 6x^2+6x-12
asymptotes\:6x^{2}+6x-12
range of (x+1)/(2x-4)
range\:\frac{x+1}{2x-4}
extreme 5+6/x+(18)/(x^2)
extreme\:5+\frac{6}{x}+\frac{18}{x^{2}}
intercepts of-(2x)/3
intercepts\:-\frac{2x}{3}
domain of f(x)=a
domain\:f(x)=a
intercepts of f(x)=(18x^2)/(x^4+81)
intercepts\:f(x)=\frac{18x^{2}}{x^{4}+81}
inverse of f(x)=4(x-2)
inverse\:f(x)=4(x-2)
domain of 2/(2/x)
domain\:\frac{2}{\frac{2}{x}}
intercepts of log_{10}(x)
intercepts\:\log_{10}(x)
parallel x/3+y/4 =1
parallel\:\frac{x}{3}+\frac{y}{4}=1
inverse of f(x)=-1/x+1
inverse\:f(x)=-\frac{1}{x}+1
intercepts of f(x)=x^5+13x^3
intercepts\:f(x)=x^{5}+13x^{3}
asymptotes of f(x)=(2x^3-3x-4)/(x^3-1)
asymptotes\:f(x)=\frac{2x^{3}-3x-4}{x^{3}-1}
distance (-9,-2),(-3,6)
distance\:(-9,-2),(-3,6)
domain of x/(\sqrt[4]{49-x^2)}
domain\:\frac{x}{\sqrt[4]{49-x^{2}}}
asymptotes of f(x)=(x^2-1)/(x-1)
asymptotes\:f(x)=\frac{x^{2}-1}{x-1}
parallel 3x+y=7
parallel\:3x+y=7
asymptotes of f(x)=(x^2-6x+8)/(-x+4)
asymptotes\:f(x)=\frac{x^{2}-6x+8}{-x+4}
inverse of f(x)=\sqrt[3]{(-n+3)/2}
inverse\:f(x)=\sqrt[3]{\frac{-n+3}{2}}
range of (3x)/(x^2-1)
range\:\frac{3x}{x^{2}-1}
inverse of y=3\sqrt[3]{x+1}
inverse\:y=3\sqrt[3]{x+1}
asymptotes of 46
asymptotes\:46
domain of (5x-2)/(x+1)
domain\:\frac{5x-2}{x+1}
inflection 16x^4-96x^2
inflection\:16x^{4}-96x^{2}
inverse of f(x)=(x-2)^3+3
inverse\:f(x)=(x-2)^{3}+3
inverse of f(x)=-3x^2-12x-5
inverse\:f(x)=-3x^{2}-12x-5
slope ofintercept y=-x+5
slopeintercept\:y=-x+5
parallel y=-7x+2,(-5,32)
parallel\:y=-7x+2,(-5,32)
domain of (x^2-5x)/(6-x^2)
domain\:\frac{x^{2}-5x}{6-x^{2}}
domain of ln(x^2-4)
domain\:\ln(x^{2}-4)
domain of f(x)=\sqrt[3]{2x-4}
domain\:f(x)=\sqrt[3]{2x-4}
intercepts of f(x)=(x^3)/(x^2-4)
intercepts\:f(x)=\frac{x^{3}}{x^{2}-4}
asymptotes of f(x)=((x-1))/(10-5x)
asymptotes\:f(x)=\frac{(x-1)}{10-5x}
range of f(x)=ln(x-1)
range\:f(x)=\ln(x-1)
inverse of log_{7}(x)
inverse\:\log_{7}(x)
range of f(x)=3x-15
range\:f(x)=3x-15
extreme f(x)=7-6x^2-x^3
extreme\:f(x)=7-6x^{2}-x^{3}
monotone x^3-4x
monotone\:x^{3}-4x
slope ofintercept 12x+9y=-45
slopeintercept\:12x+9y=-45
y=x^2-5x+6
y=x^{2}-5x+6
inverse of 7x-6
inverse\:7x-6
range of f(x)=(x^2+x-2)/(x^2)
range\:f(x)=\frac{x^{2}+x-2}{x^{2}}
midpoint (2,-7),(-8,6)
midpoint\:(2,-7),(-8,6)
asymptotes of f(x)= 8/(x^2)
asymptotes\:f(x)=\frac{8}{x^{2}}
domain of f(x)=\sqrt[3]{-5x}
domain\:f(x)=\sqrt[3]{-5x}
domain of f(x)= 4/(x+4)+sqrt(x)+1
domain\:f(x)=\frac{4}{x+4}+\sqrt{x}+1
perpendicular y= 1/5 x+4/5
perpendicular\:y=\frac{1}{5}x+\frac{4}{5}
range of f(x)=sqrt(7-x)
range\:f(x)=\sqrt{7-x}
frequency f(x)=s(x)=3cos(120pix)
frequency\:f(x)=s(x)=3\cos(120πx)
critical f(x)=2.2+2.2x-0.6x^2
critical\:f(x)=2.2+2.2x-0.6x^{2}
extreme f(x)=-16t^2+40t+3
extreme\:f(x)=-16t^{2}+40t+3
asymptotes of f(x)=(-5x)/(3x+5)
asymptotes\:f(x)=\frac{-5x}{3x+5}
domain of f(x)=9
domain\:f(x)=9
parity f(x)=| x/2 |
parity\:f(x)=\left|\frac{x}{2}\right|
range of 5/(x+6)
range\:\frac{5}{x+6}
asymptotes of (2x^2-5x-12)/(x^2-16)
asymptotes\:\frac{2x^{2}-5x-12}{x^{2}-16}
domain of f(x)=(-6x-49)/(7x+29)
domain\:f(x)=\frac{-6x-49}{7x+29}
extreme f(x)=x^2-x-3
extreme\:f(x)=x^{2}-x-3
asymptotes of f(x)=x^4
asymptotes\:f(x)=x^{4}
1
..
238
239
240
241
242
..
1324