domain of g(t)=4t^2-t+1
|
domain\:g(t)=4t^{2}-t+1
|
domain of y=x^3-x^2+x
|
domain\:y=x^{3}-x^{2}+x
|
domain of f(x)=sqrt((2x-3)/(x-2))
|
domain\:f(x)=\sqrt{\frac{2x-3}{x-2}}
|
domain of ((2x))/(sqrt(x^2-1))
|
domain\:\frac{(2x)}{\sqrt{x^{2}-1}}
|
domain of f(x)=4-x^2-4y^2>= 0
|
domain\:f(x)=4-x^{2}-4y^{2}\ge\:0
|
domain of f(x)=(2x)/(x-2)<5
|
domain\:f(x)=\frac{2x}{x-2}<5
|
domain of f(x)=(3x+1)/5
|
domain\:f(x)=\frac{3x+1}{5}
|
slope of 4x+10y=-20
|
slope\:4x+10y=-20
|
domain of f(x)=2x^2+8x-1
|
domain\:f(x)=2x^{2}+8x-1
|
domain of f(x)=log_{2}(2-3x)
|
domain\:f(x)=\log_{2}(2-3x)
|
domain of f(x)=(x+1)/(x^2+4)
|
domain\:f(x)=\frac{x+1}{x^{2}+4}
|
domain of f(x)=2x^2+8x+6
|
domain\:f(x)=2x^{2}+8x+6
|
domain of (7x-2)/(4x+5)
|
domain\:\frac{7x-2}{4x+5}
|
domain of f(x)=|ln(x-1)|
|
domain\:f(x)=\left|\ln(x-1)\right|
|
domain of 3/(2x)
|
domain\:\frac{3}{2x}
|
domain of log_{2}((2x)/3-4)
|
domain\:\log_{2}(\frac{2x}{3}-4)
|
domain of sqrt(30-4x-2x^2)
|
domain\:\sqrt{30-4x-2x^{2}}
|
inverse of 6-7x
|
inverse\:6-7x
|
domain of f(x)=(4z)/(z^2-1)
|
domain\:f(x)=\frac{4z}{z^{2}-1}
|
domain of (5x^3-9)/(x^3+13x^2+42x)
|
domain\:\frac{5x^{3}-9}{x^{3}+13x^{2}+42x}
|
domain of f(x)=(4x)/(5(x-1)(x-8))
|
domain\:f(x)=\frac{4x}{5(x-1)(x-8)}
|
domain of 5x+25
|
domain\:5x+25
|
domain of f(x)=((2x-7))/((x-3))
|
domain\:f(x)=\frac{(2x-7)}{(x-3)}
|
domain of y=(x+7)/(x^2+1)
|
domain\:y=\frac{x+7}{x^{2}+1}
|
domain of y=tan(2x)
|
domain\:y=\tan(2x)
|
domain of f(x)=(x-5)/(5-x)
|
domain\:f(x)=\frac{x-5}{5-x}
|
domain of y=(2x^2-3)/(x^2+2x+1)
|
domain\:y=\frac{2x^{2}-3}{x^{2}+2x+1}
|
domain of y=-2x+125{3,9<= y<= 50}
|
domain\:y=-2x+125\left\{3,9\le\:y\le\:50\right\}
|
inverse of 2x^2+2x+2
|
inverse\:2x^{2}+2x+2
|
domain of y=x^2-x-ln(x)
|
domain\:y=x^{2}-x-\ln(x)
|
domain of f(x)=((x-2))/((x+3))
|
domain\:f(x)=\frac{(x-2)}{(x+3)}
|
domain of f(x)=((x+1)^3)/((x-1)^2)
|
domain\:f(x)=\frac{(x+1)^{3}}{(x-1)^{2}}
|
domain of f(x)=x^2-4x+6
|
domain\:f(x)=x^{2}-4x+6
|
domain of y= 1/(3x^2-33x+54)
|
domain\:y=\frac{1}{3x^{2}-33x+54}
|
domain of f(x)=x^2-4x-1
|
domain\:f(x)=x^{2}-4x-1
|
domain of 4x^2-36
|
domain\:4x^{2}-36
|
domain of y=x^2-5x+6
|
domain\:y=x^{2}-5x+6
|
domain of (x^4-3x^3+4)/(3x^2-7x-20)
|
domain\:\frac{x^{4}-3x^{3}+4}{3x^{2}-7x-20}
|
slope of-2x+y=-4
|
slope\:-2x+y=-4
|
domain of f(x,y)=2-y^2
|
domain\:f(x,y)=2-y^{2}
|
domain of f(x)= x/(1-ln(x-5))
|
domain\:f(x)=\frac{x}{1-\ln(x-5)}
|
domain of 1/(sqrt(x+36))
|
domain\:\frac{1}{\sqrt{x+36}}
|
domain of f(x)=sqrt(y+6)
|
domain\:f(x)=\sqrt{y+6}
|
domain of f(x)=sqrt(3x^2+7x+2)
|
domain\:f(x)=\sqrt{3x^{2}+7x+2}
|
domain of f(x)=x^{1/3}(x^2-63)
|
domain\:f(x)=x^{\frac{1}{3}}(x^{2}-63)
|
domain of (2/3)^{x-3}-2
|
domain\:(\frac{2}{3})^{x-3}-2
|
domain of f(x)=sqrt(1-(2x+3)/(x-1))
|
domain\:f(x)=\sqrt{1-\frac{2x+3}{x-1}}
|
domain of f(x)= 3/(x+3)
|
domain\:f(x)=\frac{3}{x+3}
|
line m=2,(-1,-6)
|
line\:m=2,(-1,-6)
|
domain of f(x)= 3/(2x+1)
|
domain\:f(x)=\frac{3}{2x+1}
|
domain of f(x)=-6x^2-9x-2
|
domain\:f(x)=-6x^{2}-9x-2
|
domain of x^3-15x^2+68x-96
|
domain\:x^{3}-15x^{2}+68x-96
|
domain of f(x)=sqrt(-x^2+5x)
|
domain\:f(x)=\sqrt{-x^{2}+5x}
|
domain of f(x)=(sqrt(-x^2+3x-2))/(x^2-4)
|
domain\:f(x)=\frac{\sqrt{-x^{2}+3x-2}}{x^{2}-4}
|
domain of f(x)=sqrt(-2x+2)
|
domain\:f(x)=\sqrt{-2x+2}
|
domain of (4x)/(7x-8)
|
domain\:\frac{4x}{7x-8}
|
domain of y=(x^2)/(x-1)
|
domain\:y=\frac{x^{2}}{x-1}
|
domain of 1/(sqrt(x)(x^2-4))
|
domain\:\frac{1}{\sqrt{x}(x^{2}-4)}
|
domain of f(x)=sqrt(x)sqrt(x-1)
|
domain\:f(x)=\sqrt{x}\sqrt{x-1}
|
domain of f(x)=(12)/(x^2-25)
|
domain\:f(x)=\frac{12}{x^{2}-25}
|
domain of f(x)=log_{10}(log_{|sin(x)|}(x^2-8x+23)-3/(log_{2)(|sin(x)|)})
|
domain\:f(x)=\log_{10}(\log_{\left|\sin(x)\right|}(x^{2}-8x+23)-\frac{3}{\log_{2}(\left|\sin(x)\right|)})
|
domain of (8x+9)/(7x-8)
|
domain\:\frac{8x+9}{7x-8}
|
domain of f(x)=sqrt((x+5)/((x-7)(x-2)))
|
domain\:f(x)=\sqrt{\frac{x+5}{(x-7)(x-2)}}
|
domain of f(x)=sqrt(5+4x-x^2)
|
domain\:f(x)=\sqrt{5+4x-x^{2}}
|
domain of y=5x-3
|
domain\:y=5x-3
|
domain of (x^2-4x+3)/(x^2-1)
|
domain\:\frac{x^{2}-4x+3}{x^{2}-1}
|
domain of f(x)=(x^2-16)/(x^2-x-6)
|
domain\:f(x)=\frac{x^{2}-16}{x^{2}-x-6}
|
inverse of f(x)=15x-7
|
inverse\:f(x)=15x-7
|
domain of arccos(sqrt(3x^2-2))
|
domain\:\arccos(\sqrt{3x^{2}-2})
|
domain of f(x)=e^{0.5x}+4e^{-0.5x}
|
domain\:f(x)=e^{0.5x}+4e^{-0.5x}
|
domain of (x^2-8x+15)/(x^2-7x+12)
|
domain\:\frac{x^{2}-8x+15}{x^{2}-7x+12}
|
domain of f(x)=sqrt(-4-x)
|
domain\:f(x)=\sqrt{-4-x}
|
domain of f(x)=(x^2-6x+8)/(x-4)
|
domain\:f(x)=\frac{x^{2}-6x+8}{x-4}
|
domain of-log_{2}(x-1)
|
domain\:-\log_{2}(x-1)
|
domain of (5x)/(x-2)
|
domain\:\frac{5x}{x-2}
|
domain of y=2x-|4-x|
|
domain\:y=2x-\left|4-x\right|
|
domain of (2x)^{1/3}-7
|
domain\:(2x)^{\frac{1}{3}}-7
|
domain of f(x)=(x+4)/(x-7)
|
domain\:f(x)=\frac{x+4}{x-7}
|
inverse of f(x)=\sqrt[3]{x+13}
|
inverse\:f(x)=\sqrt[3]{x+13}
|
midpoint (7,2)(-3,-6)
|
midpoint\:(7,2)(-3,-6)
|
domain of (2x^2+6x+5)/(x^2+3x+2)
|
domain\:\frac{2x^{2}+6x+5}{x^{2}+3x+2}
|
domain of f(x)=2sqrt(x)+4
|
domain\:f(x)=2\sqrt{x}+4
|
domain of y=arcsin(x)+pi
|
domain\:y=\arcsin(x)+π
|
domain of f(x)=(x)=sqrt(x)
|
domain\:f(x)=(x)=\sqrt{x}
|
domain of 5/(1+x^2)
|
domain\:\frac{5}{1+x^{2}}
|
domain of 2x^2-3x-2
|
domain\:2x^{2}-3x-2
|
domain of f(x)=(2x-1)/(x^4+2x^2+2)
|
domain\:f(x)=\frac{2x-1}{x^{4}+2x^{2}+2}
|
domain of (2x-1)/(3-x)
|
domain\:\frac{2x-1}{3-x}
|
domain of (x-2)/(x^2-3x+2)
|
domain\:\frac{x-2}{x^{2}-3x+2}
|
domain of y=|x-1|+3
|
domain\:y=\left|x-1\right|+3
|
intercepts of f(x)=(0,-3)
|
intercepts\:f(x)=(0,-3)
|
domain of f(x)=log_{10}(-|x|)
|
domain\:f(x)=\log_{10}(-\left|x\right|)
|
domain of f(x)=(2x+1)/(3x-4)
|
domain\:f(x)=\frac{2x+1}{3x-4}
|
domain of y=-1/2 x+3
|
domain\:y=-\frac{1}{2}x+3
|
domain of 7-2x
|
domain\:7-2x
|
domain of (x^2+4)/x
|
domain\:\frac{x^{2}+4}{x}
|
domain of f(x)=(sin(x))/(cos(x)+1)
|
domain\:f(x)=\frac{\sin(x)}{\cos(x)+1}
|
domain of f(x)=x+2,x>= 0
|
domain\:f(x)=x+2,x\ge\:0
|
domain of (4x)/(5x-8)
|
domain\:\frac{4x}{5x-8}
|
domain of-x^2+2x+3
|
domain\:-x^{2}+2x+3
|