domain of f(x)=(x+2)/(sqrt(9-x^2))
|
domain\:f(x)=\frac{x+2}{\sqrt{9-x^{2}}}
|
domain of f(x)=24x-2328
|
domain\:f(x)=24x-2328
|
domain of 20x-1740
|
domain\:20x-1740
|
domain of (x^2+7)/(x+3)
|
domain\:\frac{x^{2}+7}{x+3}
|
domain of f(x)=\sqrt[3]{3x+2x+1}
|
domain\:f(x)=\sqrt[3]{3x+2x+1}
|
domain of f(x)=(x^2+x)/(x+1)
|
domain\:f(x)=\frac{x^{2}+x}{x+1}
|
domain of y>sqrt(3x+9)
|
domain\:y>\sqrt{3x+9}
|
perpendicular 5x-2y=4,\at (2,-4)
|
perpendicular\:5x-2y=4,\at\:(2,-4)
|
domain of x/(x^2+7x)
|
domain\:\frac{x}{x^{2}+7x}
|
domain of-x^2+7x
|
domain\:-x^{2}+7x
|
domain of y=(8x+5)/(4x+2)
|
domain\:y=\frac{8x+5}{4x+2}
|
domain of f(x)= x/(ln(-x+3))
|
domain\:f(x)=\frac{x}{\ln(-x+3)}
|
domain of f(x)=2x,-1<= x<= 5
|
domain\:f(x)=2x,-1\le\:x\le\:5
|
domain of 2/(x+2)
|
domain\:\frac{2}{x+2}
|
domain of (x^3)(4x^2+17x-15)
|
domain\:(x^{3})(4x^{2}+17x-15)
|
domain of f(x)=(x-1)/(xsqrt(1-x))-(sqrt(x+1))/(13)
|
domain\:f(x)=\frac{x-1}{x\sqrt{1-x}}-\frac{\sqrt{x+1}}{13}
|
domain of f(x)=3x-9,-1<= x<= 7
|
domain\:f(x)=3x-9,-1\le\:x\le\:7
|
domain of 1/(2(4x+1))
|
domain\:\frac{1}{2(4x+1)}
|
domain of f(x)= 1/(x-3)+6
|
domain\:f(x)=\frac{1}{x-3}+6
|
domain of sqrt(5-x)+3sqrt(x-1)
|
domain\:\sqrt{5-x}+3\sqrt{x-1}
|
domain of f(x)=ln(x/(x-3))
|
domain\:f(x)=\ln(\frac{x}{x-3})
|
domain of f(x)=x+sin(x)+sqrt(x(x-1))
|
domain\:f(x)=x+\sin(x)+\sqrt{x(x-1)}
|
domain of 2pir^2+12pir
|
domain\:2πr^{2}+12πr
|
domain of f(x)=-2^{-x}+6
|
domain\:f(x)=-2^{-x}+6
|
domain of f(x)=(3x^2)/(sqrt(x^3-3^2))
|
domain\:f(x)=\frac{3x^{2}}{\sqrt{x^{3}-3^{2}}}
|
domain of f(x)=((x+2))/((x^3-100x))
|
domain\:f(x)=\frac{(x+2)}{(x^{3}-100x)}
|
symmetry-6x^2
|
symmetry\:-6x^{2}
|
domain of f(x)= 4/(3x-12)
|
domain\:f(x)=\frac{4}{3x-12}
|
domain of f(x)=sqrt(t^2-4)
|
domain\:f(x)=\sqrt{t^{2}-4}
|
domain of log_{2}(2/3 x-4)
|
domain\:\log_{2}(\frac{2}{3}x-4)
|
domain of f(x)=sqrt(-x)-9
|
domain\:f(x)=\sqrt{-x}-9
|
domain of f(x)=(x-1)/(sqrt(x-2))
|
domain\:f(x)=\frac{x-1}{\sqrt{x-2}}
|
domain of f(x,y)=x
|
domain\:f(x,y)=x
|
domain of f(x)=y=(x-5)/(x^2-4x)
|
domain\:f(x)=y=\frac{x-5}{x^{2}-4x}
|
domain of f(x)=(4x)/(5(x-1)(x-6))
|
domain\:f(x)=\frac{4x}{5(x-1)(x-6)}
|
inverse of 4x-7
|
inverse\:4x-7
|
domain of y=3-2x
|
domain\:y=3-2x
|
domain of f(x)=3x^2+8x-1
|
domain\:f(x)=3x^{2}+8x-1
|
domain of f(x)=(x+6)/((x-6)(x-1))
|
domain\:f(x)=\frac{x+6}{(x-6)(x-1)}
|
domain of 2x+3,-2<= x<1
|
domain\:2x+3,-2\le\:x<1
|
domain of f(x)=ln(7+6x-x^2)
|
domain\:f(x)=\ln(7+6x-x^{2})
|
domain of f(x)=(2x)/(sqrt(5-2x))
|
domain\:f(x)=\frac{2x}{\sqrt{5-2x}}
|
domain of f(x)=sqrt(6-x)+\sqrt[4]{x-2}
|
domain\:f(x)=\sqrt{6-x}+\sqrt[4]{x-2}
|
domain of f(x)=((4x^2+4))/((2x^2-8))
|
domain\:f(x)=\frac{(4x^{2}+4)}{(2x^{2}-8)}
|
domain of y=(x+3)/(12-sqrt(x^2-25))
|
domain\:y=\frac{x+3}{12-\sqrt{x^{2}-25}}
|
extreme points of f(x)=(x^2+1)/(x^2-9)
|
extreme\:points\:f(x)=\frac{x^{2}+1}{x^{2}-9}
|
domain of f(x)=(sqrt(x-1))/(x^2-1)
|
domain\:f(x)=\frac{\sqrt{x-1}}{x^{2}-1}
|
domain of f(x)=log_{10}(|x|)
|
domain\:f(x)=\log_{10}(\left|x\right|)
|
domain of f(x)=(sqrt(3x+2))/(x^2-4)
|
domain\:f(x)=\frac{\sqrt{3x+2}}{x^{2}-4}
|
domain of g(x)= 1/(sqrt(x-9))
|
domain\:g(x)=\frac{1}{\sqrt{x-9}}
|
domain of f(x)=-(x+2)^5(x-4)^4
|
domain\:f(x)=-(x+2)^{5}(x-4)^{4}
|
domain of f(x)=x^4-2x^2+3
|
domain\:f(x)=x^{4}-2x^{2}+3
|
domain of f(x)=sqrt((3-x)/(|2x-5|))
|
domain\:f(x)=\sqrt{\frac{3-x}{\left|2x-5\right|}}
|
domain of 2x+3\sqrt[3]{x^2}
|
domain\:2x+3\sqrt[3]{x^{2}}
|
domain of f(t)=sqrt(t)
|
domain\:f(t)=\sqrt{t}
|
inverse of (2x)/(x^2-1)
|
inverse\:\frac{2x}{x^{2}-1}
|
domain of f(x)=(1-2x)/(x^2-9)
|
domain\:f(x)=\frac{1-2x}{x^{2}-9}
|
domain of f(x)=3sqrt(7-10x)+6
|
domain\:f(x)=3\sqrt{7-10x}+6
|
domain of f(x)=sqrt(-8+1/2 x)
|
domain\:f(x)=\sqrt{-8+\frac{1}{2}x}
|
domain of g(x)=(1/2)^x
|
domain\:g(x)=(\frac{1}{2})^{x}
|
domain of f(x)=sqrt((25-5x)/4)
|
domain\:f(x)=\sqrt{\frac{25-5x}{4}}
|
domain of f(x)=3x^2-2x+5
|
domain\:f(x)=3x^{2}-2x+5
|
domain of f(x)=x^2y^2-4x^2-4y^2=0
|
domain\:f(x)=x^{2}y^{2}-4x^{2}-4y^{2}=0
|
domain of f(x)=(x-5)/(2x+1)
|
domain\:f(x)=\frac{x-5}{2x+1}
|
domain of y=2x-7
|
domain\:y=2x-7
|
periodicity of 5sin(4x-pi)
|
periodicity\:5\sin(4x-\pi)
|
domain of (x^2-1)/(x^2+4)
|
domain\:\frac{x^{2}-1}{x^{2}+4}
|
domain of f(x)=(\sqrt[4]{28-7x})/x
|
domain\:f(x)=\frac{\sqrt[4]{28-7x}}{x}
|
domain of-log_{2}(3(x-2))+4
|
domain\:-\log_{2}(3(x-2))+4
|
domain of f(x)=(8x^2-10x-3)/(2x^2-9x+9)
|
domain\:f(x)=\frac{8x^{2}-10x-3}{2x^{2}-9x+9}
|
domain of f(x)=((x^2+3))/(x+3)
|
domain\:f(x)=\frac{(x^{2}+3)}{x+3}
|
domain of y=-2x-7
|
domain\:y=-2x-7
|
domain of f(x)=sqrt((x-1)(x+2))
|
domain\:f(x)=\sqrt{(x-1)(x+2)}
|
domain of 1/((x-4)^2)
|
domain\:\frac{1}{(x-4)^{2}}
|
domain of y=sqrt(x-5)-1
|
domain\:y=\sqrt{x-5}-1
|
domain of f(x)= 2/(sqrt(1+x))
|
domain\:f(x)=\frac{2}{\sqrt{1+x}}
|
domain of f(x)=-x^2+16
|
domain\:f(x)=-x^{2}+16
|
domain of 3^{x+3}
|
domain\:3^{x+3}
|
domain of f(x)=((2x-6))/5
|
domain\:f(x)=\frac{(2x-6)}{5}
|
domain of 8/(49x)-5
|
domain\:\frac{8}{49x}-5
|
domain of (log_{10}(x-2))/(sqrt(18-2x))
|
domain\:\frac{\log_{10}(x-2)}{\sqrt{18-2x}}
|
domain of f(t)=sec((pit)/4)
|
domain\:f(t)=\sec(\frac{πt}{4})
|
domain of f(x)=sqrt(4x^2-16)
|
domain\:f(x)=\sqrt{4x^{2}-16}
|
domain of log_{1/4}(x)
|
domain\:\log_{\frac{1}{4}}(x)
|
inflection points of-3x^4+20x^3-24x^2
|
inflection\:points\:-3x^{4}+20x^{3}-24x^{2}
|
domain of sqrt((4x+3)/(2x-1))
|
domain\:\sqrt{\frac{4x+3}{2x-1}}
|
domain of f(x)= x/(sqrt(x^2-5))
|
domain\:f(x)=\frac{x}{\sqrt{x^{2}-5}}
|
domain of f(x)=-2x^2+12x+5
|
domain\:f(x)=-2x^{2}+12x+5
|
domain of f(x)= 5/(x^2-x)
|
domain\:f(x)=\frac{5}{x^{2}-x}
|
domain of f(x)=-3t
|
domain\:f(x)=-3t
|
domain of f(x)=log_{2}(x-3)+1
|
domain\:f(x)=\log_{2}(x-3)+1
|
domain of f(x)=f(x)=((x^2+16))/((x^2-9))
|
domain\:f(x)=f(x)=\frac{(x^{2}+16)}{(x^{2}-9)}
|
domain of f(x)=sqrt(1/4)x
|
domain\:f(x)=\sqrt{\frac{1}{4}}x
|
domain of f(x)=sqrt(\sqrt{x)-1}-1
|
domain\:f(x)=\sqrt{\sqrt{x}-1}-1
|
inverse of-9/((x-7)^2)
|
inverse\:-\frac{9}{(x-7)^{2}}
|
domain of f(x)=75x
|
domain\:f(x)=75x
|
domain of f(x)=(3x)/(2x-1)
|
domain\:f(x)=\frac{3x}{2x-1}
|
domain of f(x)=2-sqrt(15+2x-x^2)
|
domain\:f(x)=2-\sqrt{15+2x-x^{2}}
|
domain of f(x)=arcsin(sin(x))
|
domain\:f(x)=\arcsin(\sin(x))
|
domain of f(x)=3(3)^{x-1}
|
domain\:f(x)=3(3)^{x-1}
|